搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声波电喷推力器羽流中和特性研究

于博 张岩 贺伟国 杭观荣 康小录 赵青

引用本文:
Citation:

超声波电喷推力器羽流中和特性研究

于博, 张岩, 贺伟国, 杭观荣, 康小录, 赵青

Plume neutralization mechanism for ultrasonically aided electrospray thruster

Yu Bo, Zhang Yan, He Wei-Guo, Hang Guan-Rong, Kang Xiao-Lu, Zhao Qing
PDF
导出引用
  • 超声波电喷推力器主要应用在小卫星(10 kg)平台,为解决该类型推力器的羽流在中和过程中产生的推力偏角以及能效低的问题,对超声波电喷推力器的羽流中和过程进行数值研究.为实现电喷推力器羽流特有物理过程的仿真,建立了一种带电液滴中和模型(NECD模型),对电子-正电液滴的中和过程进行捕捉,包括带电粒子的输运过程、电子液滴碰撞过程以及液滴的破碎与重组等过程;为验证模型的可行性和精度,开展推力测量和羽流高速照相试验,以工况相同试验和仿真结果进行对比.结果显示,该模型的综合计算误差在20%左右,在不同工况下可以和试验值形成趋势上的符合.基于该计算模型,对放电功率为2 W、放电电流为2 mA的超声波电喷推力器进行羽流输运过程的数值模拟,获得表征羽流中和特性的几种参数分布,包括数密度、电荷密度、液滴体积大小等,并统计出各类能耗所占比例,解释了推力偏角和能效低问题的内在机理以及为相应优化提供参考.
    The ultrasonically aided electrospray thrusters (UAET) are used mainly on micro-satellites (with mass less than 10 kg). In this work, numerical simulation studies of the UAET plume field are conducted to investigate the following two problems encountered during operational tests:the avertence angle of thrust direction, which exists between the design and test outcome, and the lower energy efficiency than the established theoretical value. In order to precisely model the special physical process of the UAET plume neutralization, we develop a new hybrid model named the neutralization of electrons and charged droplets for the plume fluid field to capture the neutralization process of electrons and positively charged droplets. This model describes the dynamical movement of particles, the collision between electrons and droplets, the breakage and coalescence of the droplets, and the flow and heat transfer between the droplets and background gas. To show the feasibility and accuracy of the model, experimental tests involving thrust measurements and high-speed photography of the plume are conducted. The comparison between the test and simulation results under the same study conditions shows that the average error of this model is about 20%, and both the test and calculation exhibit a consistent trend in the various study cases. According to this model, we simulate the plume fluid field of UAET (with 2-W discharge power and 2-mA current) and identify the distribution characteristics of several parameters, including the droplet number density, charge density and the droplet volume, as well as the energy consumption categories that occur. Our model can successfully demonstrate the internal mechanisms that cause the two problems identified above. Our work will provide support for future studies of optimal design.
      通信作者: 赵青, zhaoq@usetc.edu.cn
      Corresponding author: Zhao Qing, zhaoq@usetc.edu.cn
    [1]

    Zhao Q, Huang X P, Lin E, Jiao J, Liang G F, Chen T 2017 Opto-Electronic Engineer. 44 140

    [2]

    Jiao J, Zhao Q, Li X, Liang G F, Huang X P, Luo X 2014 Opt. Express 22 26277

    [3]

    Zhao Y, Huang C, Qing A Y, Luo X 2017 IEEE Photon. J. 99 1

    [4]

    Taylor G 1964 Proc. Roy. Soc. Lond. A 280 383

    [5]

    Romero S, Bocanegra R, Gamero C 2003 J. Appl. Phys. 94 3599

    [6]

    Lozano P, Martinez S 2005 41st Joint Propulsion Conference & Exhibit Tuscon, Arizona. July 10-13, 2005 p1

    [7]

    Ober S, Branam R, Huffman R 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orland, Florida, January 4-7, 2011 p1

    [8]

    Legge R, Lozano P 2011 J. Propuls. Power 27 485

    [9]

    Reading C, Anderson J, Kubiak C, Greer F, Rouhi N, Wilson D, White V, Dickie M, Mueller R, Singh V, Mackie W, Wirz R, Castano M 2016 AIAA Propulsion and Energy Forum Salt Lake City, UT, July 25-27, 2016 p1

    [10]

    Kurt J, Lyon B 2016 52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, UT, July 25-27, 2016 p1

    [11]

    Gutierrez E, Castano M 2017 J. Propuls. Power 33 984

    [12]

    Song W D, Shumlak U. 2010 J. Propuls. Power 26 353

    [13]

    Dong L, Song W D, Kang X M, Zhao W S 2012 Acta Astron. 77 1

    [14]

    Zhang Y B, Hang G R, Dong L, Kang X M, Zhao W S, Zhang Y, Kang X L 2016 Chin. Space Sci. Technol. 36 9 (in Chinese)[张姚滨, 杭观荣, 董磊, 康小明, 赵万生, 张岩, 康小录 2016 中国空间科学技术 36 9]

    [15]

    Kang X M, Dong L, Zhao W S 2014 Acta Astron. 98 1

    [16]

    Passaro A, Nania F, Vicini A 2006 37th AIAA Plasmadynamics and Lasers Conference San Francisco, California, June 5-8, 2006 p1

    [17]

    Robert S, Eduardo A 2009 45th Joint Propulsion Conference & Exhibit Denver, Colorado August 2-5, 2009 p1

    [18]

    Bird G 1963 Gas. Phys. Fluids 6 1518

    [19]

    Jayaratne O, Mason B 1974 Proc. Roy. Soc. Lond. 380 218

    [20]

    Luo T Q, Wang X Y, Zheng J Q, Wang Z T, Mao H M 2007 Drainage and Irrigation Machinery 25 57 (in Chinese)[罗惕乾, 王晓英, 郑捷庆, 王贞涛, 毛惠敏 2007 排灌机械 25 57]

    [21]

    Gao S Q, Liu H P 2010 Capillary Mechanics (Beijing:Science Press) p60 (in Chinese)[高世桥, 刘海鹏 2010 毛细力学 (北京:科学出版社) 第60页]

    [22]

    Cai B, Lee L, Wang Z L 2003 J. Engineer. Thermophys. 24 613 (in Chinese)[蔡斌, 李磊, 王照林 2003 工程热物理学报 24 613]

    [23]

    Higuera F 2003 J. Fluid Mech. 484 303

    [24]

    Yang S M, Tao W Q 2006 Heat Transfer (4th Ed.) (Beijing:Higher Education Press) p258 (in Chinese)[杨世铭, 陶文铨 2006 传热学 (第四版) (北京:高等教育出版社) 第258页]

    [25]

    Landau L (translated by Lee Z) 2013 Fluid Dynamics (5th Ed.) (Beijing:Higher Education Press) pp201-202 (in Chinese)[朗道L 著 (李植 译) 2013 流体动力学(第五版) (北京:高等教育出版社) 第201–202页]

  • [1]

    Zhao Q, Huang X P, Lin E, Jiao J, Liang G F, Chen T 2017 Opto-Electronic Engineer. 44 140

    [2]

    Jiao J, Zhao Q, Li X, Liang G F, Huang X P, Luo X 2014 Opt. Express 22 26277

    [3]

    Zhao Y, Huang C, Qing A Y, Luo X 2017 IEEE Photon. J. 99 1

    [4]

    Taylor G 1964 Proc. Roy. Soc. Lond. A 280 383

    [5]

    Romero S, Bocanegra R, Gamero C 2003 J. Appl. Phys. 94 3599

    [6]

    Lozano P, Martinez S 2005 41st Joint Propulsion Conference & Exhibit Tuscon, Arizona. July 10-13, 2005 p1

    [7]

    Ober S, Branam R, Huffman R 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orland, Florida, January 4-7, 2011 p1

    [8]

    Legge R, Lozano P 2011 J. Propuls. Power 27 485

    [9]

    Reading C, Anderson J, Kubiak C, Greer F, Rouhi N, Wilson D, White V, Dickie M, Mueller R, Singh V, Mackie W, Wirz R, Castano M 2016 AIAA Propulsion and Energy Forum Salt Lake City, UT, July 25-27, 2016 p1

    [10]

    Kurt J, Lyon B 2016 52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, UT, July 25-27, 2016 p1

    [11]

    Gutierrez E, Castano M 2017 J. Propuls. Power 33 984

    [12]

    Song W D, Shumlak U. 2010 J. Propuls. Power 26 353

    [13]

    Dong L, Song W D, Kang X M, Zhao W S 2012 Acta Astron. 77 1

    [14]

    Zhang Y B, Hang G R, Dong L, Kang X M, Zhao W S, Zhang Y, Kang X L 2016 Chin. Space Sci. Technol. 36 9 (in Chinese)[张姚滨, 杭观荣, 董磊, 康小明, 赵万生, 张岩, 康小录 2016 中国空间科学技术 36 9]

    [15]

    Kang X M, Dong L, Zhao W S 2014 Acta Astron. 98 1

    [16]

    Passaro A, Nania F, Vicini A 2006 37th AIAA Plasmadynamics and Lasers Conference San Francisco, California, June 5-8, 2006 p1

    [17]

    Robert S, Eduardo A 2009 45th Joint Propulsion Conference & Exhibit Denver, Colorado August 2-5, 2009 p1

    [18]

    Bird G 1963 Gas. Phys. Fluids 6 1518

    [19]

    Jayaratne O, Mason B 1974 Proc. Roy. Soc. Lond. 380 218

    [20]

    Luo T Q, Wang X Y, Zheng J Q, Wang Z T, Mao H M 2007 Drainage and Irrigation Machinery 25 57 (in Chinese)[罗惕乾, 王晓英, 郑捷庆, 王贞涛, 毛惠敏 2007 排灌机械 25 57]

    [21]

    Gao S Q, Liu H P 2010 Capillary Mechanics (Beijing:Science Press) p60 (in Chinese)[高世桥, 刘海鹏 2010 毛细力学 (北京:科学出版社) 第60页]

    [22]

    Cai B, Lee L, Wang Z L 2003 J. Engineer. Thermophys. 24 613 (in Chinese)[蔡斌, 李磊, 王照林 2003 工程热物理学报 24 613]

    [23]

    Higuera F 2003 J. Fluid Mech. 484 303

    [24]

    Yang S M, Tao W Q 2006 Heat Transfer (4th Ed.) (Beijing:Higher Education Press) p258 (in Chinese)[杨世铭, 陶文铨 2006 传热学 (第四版) (北京:高等教育出版社) 第258页]

    [25]

    Landau L (translated by Lee Z) 2013 Fluid Dynamics (5th Ed.) (Beijing:Higher Education Press) pp201-202 (in Chinese)[朗道L 著 (李植 译) 2013 流体动力学(第五版) (北京:高等教育出版社) 第201–202页]

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [3] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [4] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [5] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [6] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟. 物理学报, 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [7] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [8] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [9] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [10] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [11] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [12] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [13] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [14] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [15] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [16] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟. 物理学报, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [18] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [19] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟. 物理学报, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  7222
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-05
  • 修回日期:  2017-11-11
  • 刊出日期:  2019-02-20

/

返回文章
返回