搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析

彭艳玲 薛文瑞 卫壮志 李昌勇

引用本文:
Citation:

涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析

彭艳玲, 薛文瑞, 卫壮志, 李昌勇

Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides

Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong
PDF
导出引用
  • 采用多级展开方法,对涂覆石墨烯的非对称并行电介质纳米线波导的模式特性进行了分析.首先对这种波导中的表面等离子模式进行分类,然后对七种低阶模式的有效折射率和传播长度随工作频率、几何结构参数和石墨烯费米能的依赖关系进行详细的分析.结果表明,通过改变工作频率、几何结构参数和石墨烯的费米能,可以在较大范围内调节模式的特性.与有限元法进行的对比表明,基于多级方法的半解析结果与有限元法的数值结果非常符合.研究结果可为涂覆石墨烯的非对称并行电介质纳米线的设计和制作提供一定的理论基础.
    In this paper, the mode properties of graphene-coated asymmetric parallel dielectric nanowire waveguides are analyzed by the multipole expansion method. First, the surface plasmon modes supported by the waveguides are classified. Then, the influences of frequency, geometry parameters and graphene Fermi energy on the effective refractive index and propagation length of the seven low order modes are studied in detail. The seven low order modes can be divided into two categories: cos mode and sin mode. The cos mode includes modes 0, 2, 4 and 6, while sin mode includes modes 1, 3 and 5. The results show that the characteristics of the modes can be adjusted in a wide range by changing the frequency, geometrical parameters and the Fermi energy of graphene. When the frequency increases from 10 THz to 50 THz, the number of graphene surface plasmon modes increases and the effective refractive index of each mode increases monotonically. Moreover, with the increase of frequency, the propagation length of cos mode decreases monotonically, and the propagation length of sin mode shows the trend of first increasing and then decreasing. As the distance between the two dielectric nanowires increases, the mode properties of modes 0 and 1 change drastically, while the effective refractive indexes and propagation lengths of other modes vary very little. As the radius of one of the dielectric nanowires increases, the number of modes increases in the calculated range, while the effective refractive index and propagation length of each mode are less affected. In the process of increasing the Fermi energy of graphene from 0.3 eV to 0.7 eV, the effective refractive index and propagation length of each mode vary greatly. Moreover, the effective refractive index of each mode decreases monotonically, while the propagation length increases. It is also found that the compositions of the low order modes vary with the size of the two nanowires for this asymmetric structure. The comparison with the finite element method shows that the semi-analytical results based on multipole method are in good agreement with the numerical results from the finite element method. The present work may provide a theoretical basis for designing and fabricating the asymmetric parallel dielectric nanowires coated with graphene.
      通信作者: 薛文瑞, wrxue@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61378039,61575115)和国家基础科学人才培养基金(批准号:J1103210)资助的课题.
      Corresponding author: Xue Wen-Rui, wrxue@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115) and the National Basic Science Talents Training Fund of China (Grant No. J1103210).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [3]

    Vakil A, Engheta N 2011 Science 332 1291

    [4]

    He X Y, Zhang X C, Zhang H, Xu M 2014 IEEE J. Sel. Top. Quant. 20 4500107

    [5]

    Christensen J, Manjavacas A, Thongrattanasiri S, Kippens F H L, Abajo F J G 2012 ACS Nano 6 431

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [7]

    Rodrigo D, Limaj O, Janner D, Etezadi D, Abajo F J G, Pruneri V, Altug H 2015 Science 349 165

    [8]

    Lu Y, Goldsmith B R, Kybert N J, Johnson A T C 2010 Appl. Phys. Lett. 97 083107

    [9]

    Huang Z R, Wang L L, Sun B, He M D, Liu J Q, Li H J, Zhai X 2014 J. Opt. 16 105004

    [10]

    He S L, Zhang X Z, He Y G 2013 Opt. Express 21 30664

    [11]

    Qin K, Xiao B G, Sun R L 2015 Micro Nano Lett. 10 558

    [12]

    Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S, Qin S Q 2015 Opt. Express 23 5147

    [13]

    Liu P H, Zhang X Z, Ma Z H, Cai W, Wang L, Xu J J 2013 Opt. Express 21 32432

    [14]

    Dai Y Y, Zhu X L, Mortensen N A, Zi J, Xiao S S 2015 J. Opt. 17 065002

    [15]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [16]

    Hajati M, Hajati Y 2016 J. Opt. Soc. Am. B 33 2560

    [17]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Lian Y D, Jian S S 2014 Opt. Express 22 24322

    [18]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [19]

    Liu J P, Zhai X, Wang L L, Li H J, Xie F, Lin Q, Xia S X 2016 Plasmonics 11 703

    [20]

    Jiang J, Zhang D H, Zhang B L, Luo Y 2017 Opt. Lett. 42 2890

    [21]

    Wijingaard W 1973 J. Opt. Soc. Am. 63 944

    [22]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [23]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [3]

    Vakil A, Engheta N 2011 Science 332 1291

    [4]

    He X Y, Zhang X C, Zhang H, Xu M 2014 IEEE J. Sel. Top. Quant. 20 4500107

    [5]

    Christensen J, Manjavacas A, Thongrattanasiri S, Kippens F H L, Abajo F J G 2012 ACS Nano 6 431

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [7]

    Rodrigo D, Limaj O, Janner D, Etezadi D, Abajo F J G, Pruneri V, Altug H 2015 Science 349 165

    [8]

    Lu Y, Goldsmith B R, Kybert N J, Johnson A T C 2010 Appl. Phys. Lett. 97 083107

    [9]

    Huang Z R, Wang L L, Sun B, He M D, Liu J Q, Li H J, Zhai X 2014 J. Opt. 16 105004

    [10]

    He S L, Zhang X Z, He Y G 2013 Opt. Express 21 30664

    [11]

    Qin K, Xiao B G, Sun R L 2015 Micro Nano Lett. 10 558

    [12]

    Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S, Qin S Q 2015 Opt. Express 23 5147

    [13]

    Liu P H, Zhang X Z, Ma Z H, Cai W, Wang L, Xu J J 2013 Opt. Express 21 32432

    [14]

    Dai Y Y, Zhu X L, Mortensen N A, Zi J, Xiao S S 2015 J. Opt. 17 065002

    [15]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [16]

    Hajati M, Hajati Y 2016 J. Opt. Soc. Am. B 33 2560

    [17]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Lian Y D, Jian S S 2014 Opt. Express 22 24322

    [18]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [19]

    Liu J P, Zhai X, Wang L L, Li H J, Xie F, Lin Q, Xia S X 2016 Plasmonics 11 703

    [20]

    Jiang J, Zhang D H, Zhang B L, Luo Y 2017 Opt. Lett. 42 2890

    [21]

    Wijingaard W 1973 J. Opt. Soc. Am. 63 944

    [22]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [23]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] 李慧慧, 薛文瑞, 李宁, 杜易达, 李昌勇. 涂覆石墨烯的嵌套偏心空心圆柱的椭圆形电介质波导的模式特性. 物理学报, 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [7] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [9] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [12] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [13] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [14] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射. 物理学报, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [15] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] 岳嵩, 李智, 陈建军, 龚旗煌. 基于耦合介质纳米线的深亚波长局域波导. 物理学报, 2011, 60(9): 094214. doi: 10.7498/aps.60.094214
    [20] 盛峥, 黄思训, 曾国栋. 利用Bayesian-MCMC方法从雷达回波反演海洋波导. 物理学报, 2009, 58(6): 4335-4341. doi: 10.7498/aps.58.4335
计量
  • 文章访问数:  6925
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-12
  • 修回日期:  2017-11-02
  • 刊出日期:  2018-02-05

/

返回文章
返回