搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运用理想光子禁带模型实现对激发态原子系统演化的调控

张斯淇 陆景彬 刘晓静 刘继平 李宏 梁禺 张晓茹 刘晗 吴向尧 郭义庆

引用本文:
Citation:

运用理想光子禁带模型实现对激发态原子系统演化的调控

张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆

Control of evolutionary atomic system of excited atom by using ideal photonic band-gap model

Zhang Si-Qi, Lu Jing-Bin, Liu Xiao-Jing, Liu Ji-Ping, Li Hong, Liang Yu, Zhang Xiao-Ru, Liu Han, Wu Xiang-Yao, Guo Yi-Qing
PDF
导出引用
  • 通过调节动静态理想光子禁带模型库的结构参数,研究了初态处于激发态的两能级原子系统的演化.在静态无调制下研究理想光子禁带模型库环境的半宽度、中心谐振频率及比重对原子布居数演化的影响.在理想光子禁带库环境的中心共振频率受动态调制下,其调制形式分别取为:矩形单次脉冲、矩形周期性脉冲和缓变连续周期.在此基础上讨论动态调制形式的不同对原子布居数演化的影响.无论怎样的动态调制形式,衰减抑制在原子系统的演化过程还是有较明显的体现.这样就使得利用环境变化对原子布居数和原子系统相干性演化调制的想法得以实现.
    The evolution of two-level atomic system, in which the initial state is excited state, is investigated by adjusting the structural parameters of the dynamic and static ideal photonic band-gap environment reservoir. In a static state (no modulation), we study the effects of half width, center resonant frequency, and specific gravity on the evolution of energy level population. The results show that when the half width or the specific gravity decreases, in the atomic system there happens decoherence, and the energy dissipation to the outside becomes slower. When the center resonant frequency increases, there exists no resonance between the library central resonant frequency and the atom transition frequency, then the attenuation suppression effect occurs, and the time of atomic attenuation to ground state is longer. An actual quantum system is not isolated, so it is inevitable that it interacts with its ambient environment. Owing to the influence of environment, in the system there appears an irreversible quantum decoherence phenomenon. Therefore, how to effectively suppress the decoherence of quantum system becomes an important problem in quantum information science. Linington and Garraway (2008 Phys. Rev. A 77 033831) pointed out that the evolution process of a two-level atom quantum state can be manipulated by a dynamic dissipative environment. So, we use the dynamic cavity environment to control the evolution of spontaneous emission from an excited two-level atom. The dynamic modulation form for the center resonant frequency of the ideal photonic band-gap environment reservoir includes the rectangular single pulse, rectangular periodic pulse, and slow continuous period. Owing to the periodic modulation, the atoms are affected by different environments. On this basis, the influence of dynamic modulation form on the atomic population evolution is discussed. It is found that no matter what form the dynamic modulation is in, the attenuation inhibition in the evolution of atomic system is evident. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.
      通信作者: 陆景彬, ljb@jlu.edu.cn
    • 基金项目: 吉林省科技发展计划(批准号:20130101031JC)资助的课题.
      Corresponding author: Lu Jing-Bin, ljb@jlu.edu.cn
    • Funds: Project supported by the Scientific and Technological Development Foundation of Jilin Province, China (Grant No. 20130101031JC).
    [1]

    Yang Y P, Fleischhauer M, Zhu S Y 2003 Phys. Rev. A 68 022103

    [2]

    Fisher M C, Medina B G, Raizen M G 2001 Phys. Rev. Lett. 87 040402

    [3]

    Paspalakis E, Knight P L 2000 J. Modern Opt. 47 1025

    [4]

    Purcell E M, Torrey H C, Pound R V 1946 Phys. Rev. 69 37

    [5]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [6]

    Wang X H, Kivshar Y S, Gu B Y 2004 Phys. Rev. Lett. 93 073901

    [7]

    Sun X D, Jiang X Q 2008 Opt. Lett. 33 110

    [8]

    Lodahl P, van Driel A F, Nikblaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654

    [9]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [10]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488

    [11]

    Lin L H 2009 Chin. Phys. B 18 588

    [12]

    Lu J H, Meng Z M, Liu H Y, Feng T H, Dai Q F, Wu L J, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333

    [13]

    Wu C W, Han Y, Deng Z J, Liang L M, Li C Z 2010 Chin. Phys. B 19 010313

    [14]

    Vahala K J 2003 Nature 424 839

    [15]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [16]

    Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 物理学报 66 014202]

    [17]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [18]

    Garraway B M 1997 Phys. Rev. A 55 2290

    [19]

    Zhang Y J, Man Z X, Xia Y J, Guo G C 2010 Eur. Phys. J. D 58 397

    [20]

    Zhang Y J, Han W, Fan H, Xia Y J 2015 Ann. Phys. 354 203

    [21]

    Huang X S, Liu H L, Yang Y P, Shi Y L 2011 Acta Phys. Sin. 60 024205 (in Chinese) [黄仙山, 刘海莲, 羊亚平, 石云龙 2011 物理学报 60 024205]

    [22]

    Huang X S, Liu H L 2011 Acta Phys. Sin. 60 034205 (in Chinese) [黄仙山, 刘海莲 2011 物理学报 60 034205]

  • [1]

    Yang Y P, Fleischhauer M, Zhu S Y 2003 Phys. Rev. A 68 022103

    [2]

    Fisher M C, Medina B G, Raizen M G 2001 Phys. Rev. Lett. 87 040402

    [3]

    Paspalakis E, Knight P L 2000 J. Modern Opt. 47 1025

    [4]

    Purcell E M, Torrey H C, Pound R V 1946 Phys. Rev. 69 37

    [5]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [6]

    Wang X H, Kivshar Y S, Gu B Y 2004 Phys. Rev. Lett. 93 073901

    [7]

    Sun X D, Jiang X Q 2008 Opt. Lett. 33 110

    [8]

    Lodahl P, van Driel A F, Nikblaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654

    [9]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [10]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488

    [11]

    Lin L H 2009 Chin. Phys. B 18 588

    [12]

    Lu J H, Meng Z M, Liu H Y, Feng T H, Dai Q F, Wu L J, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333

    [13]

    Wu C W, Han Y, Deng Z J, Liang L M, Li C Z 2010 Chin. Phys. B 19 010313

    [14]

    Vahala K J 2003 Nature 424 839

    [15]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [16]

    Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 物理学报 66 014202]

    [17]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [18]

    Garraway B M 1997 Phys. Rev. A 55 2290

    [19]

    Zhang Y J, Man Z X, Xia Y J, Guo G C 2010 Eur. Phys. J. D 58 397

    [20]

    Zhang Y J, Han W, Fan H, Xia Y J 2015 Ann. Phys. 354 203

    [21]

    Huang X S, Liu H L, Yang Y P, Shi Y L 2011 Acta Phys. Sin. 60 024205 (in Chinese) [黄仙山, 刘海莲, 羊亚平, 石云龙 2011 物理学报 60 024205]

    [22]

    Huang X S, Liu H L 2011 Acta Phys. Sin. 60 034205 (in Chinese) [黄仙山, 刘海莲 2011 物理学报 60 034205]

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] 何鑫, 李鑫焱, 李景辉, 张振华. Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应. 物理学报, 2022, 71(21): 218503. doi: 10.7498/aps.71.20220949
    [3] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理. 物理学报, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [4] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [5] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究. 物理学报, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [6] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [7] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性. 物理学报, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [8] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [9] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [10] 额尔敦朝鲁, 白旭芳, 韩超. 抛物量子点中强耦合磁双极化子内部激发态性质. 物理学报, 2014, 63(2): 027501. doi: 10.7498/aps.63.027501
    [11] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [12] 赵健东, 辛洁. 高激发态原子的相干效应. 物理学报, 2012, 61(19): 193302. doi: 10.7498/aps.61.193302
    [13] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [14] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控. 物理学报, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [15] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控. 物理学报, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [16] 汤乃云, 陈效双, 陆 卫. 尺寸分布对量子点激发态发光性质的影响. 物理学报, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
    [17] 徐 靖, 王治国, 石云龙, 陈宇光, 陈 鸿. 晶格量子涨落对spin-Peierls系统低能量激发态的影响. 物理学报, 2004, 53(11): 3882-3887. doi: 10.7498/aps.53.3882
    [18] 文根旺. 量子激发态最陡下降微扰理论. 物理学报, 1991, 40(9): 1388-1395. doi: 10.7498/aps.40.1388
    [19] 刘磊, 李家明. Fr原子的激发态结构. 物理学报, 1988, 37(12): 2053-2056. doi: 10.7498/aps.37.2053
    [20] 朱熙文. 高激发态钠原子的量子拍实验的某些分析. 物理学报, 1981, 30(12): 1688-1692. doi: 10.7498/aps.30.1688
计量
  • 文章访问数:  6020
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-17
  • 修回日期:  2018-01-17
  • 刊出日期:  2018-05-05

/

返回文章
返回