搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自发参量下转换源二阶激发过程产生四光子超纠缠态

何英秋 丁东 彭涛 闫凤利 高亭

引用本文:
Citation:

基于自发参量下转换源二阶激发过程产生四光子超纠缠态

何英秋, 丁东, 彭涛, 闫凤利, 高亭

Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term

He Ying-Qiu, Ding Dong, Peng Tao, Yan Feng-Li, Gao Ting
PDF
导出引用
  • 目前,多光子纠缠态的制备大多通过线性光学器件演化自发参量下转换一阶激发过程产生的纠缠光子对得到.本文考虑由自发参量下转换源二阶激发产生四个不可区分的纠缠光子制备四光子超纠缠态的情况.通过几组分束器、半波片和偏振分束器等线性光学器件设计量子线路演化四光子系统,结合四模符合探测,可得到同时具有偏振纠缠和空间纠缠的四光子超纠缠态.
    Nowadays,the generation of multiphoton entangled states is almost realized by combining the coupled entangled photons emitted from spontaneous parametric down-conversion (SPDC) with the first-order term.In this case,one may focus mainly on the first-order term,and then avoid multipair emission events by restricting experimental parameters.On the other hand,for the higher-order terms in SPDC source,these emitted entangled photons have interesting features.For example,they are entangled maximally not only in photon number for the spatial modes,but also in polarization degree of freedom.In general,two photons,which are entangled in two or more degrees of freedom,are called hyperentangled pair of photons or hyperentangled state.We present a scheme to generate the four-photon hyperentangled state based on four indistinguishable photons emitted from SPDC source with the second-order term.Consider two SPDC sources with equal probability of emission of photons in respective spatial modes.With the passive linear optical devices,i.e., beam splitters,half wave plates,polarizing beam splitters,etc.,under the condition of registering a specified four-photon coincidence,we can obtain the four-photon hyperentangled state in which the photons are entangled in both polarization and spatial-mode degrees of freedom.Here,of course,for an arbitrary fourfold coincidence detection,one obtains a canonical four-photon Greenberger-Horne-Zeilinger (GHZ) state.Then we show the results of fourfold coincidence detections and the corresponding probabilities for the four-photon GHZ states,where the generation of the four-photon hyperentangled state is included as long as we are not to distinguish the two detectors located at the same locations. As a result,our scheme has two notable features.When we only consider the second-order emission,since it is not needed for us to distinguish between the two SPDC sources,the present scheme is simple and feasible.Also,based on the postselection with fourfold coincidence detection,our scheme is suitable for the normal first-order emission where we restrict the four photons emitted from the same source.In this sense,our scheme is efficient.In a word,we describe a method to generate the four-photon hyperentangled state with the second-order emission in SPDC source,which may contribute to the exploration of multipair entanglement with higher-order emissions from the SPDC source.
      通信作者: 丁东, dingdong@ncist.edu.cn;flyan@hebtu.edu.cn ; 闫凤利, dingdong@ncist.edu.cn;flyan@hebtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11475054,11371005,11547169)、河北省自然科学基金(批准号:A2016205145,A2018205125)、承德医学院高层次人才科研启动基金(批准号:201701)、中央高校基本科研业务费专项资金(批准号:3142017069,3142015044)和河北省高等学校科学技术研究项目(批准号:Z2015188)资助的课题.
      Corresponding author: Ding Dong, dingdong@ncist.edu.cn;flyan@hebtu.edu.cn ; Yan Feng-Li, dingdong@ncist.edu.cn;flyan@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475054, 11371005, 11547169), the Hebei Natural Science Foundation of China (Grant Nos. A2016205145, A2018205125), the Foundation for High-Level Talents of Chengde Medical University, China (Grant No. 201701), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 3142017069, 3142015044), and the Research Project of Science and Technology in Higher Education of Hebei Province of China (Grant No. Z2015188).
    [1]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żkowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Burnham D C, Weinberg D L 1970 Phys. Rev. Lett. 25 84

    [4]

    Kiess T E, Shih Y H, Sergienko A V, Alley C O 1993 Phys. Rev. Lett. 71 3893

    [5]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A 1995 Phys. Rev. Lett. 75 4337

    [6]

    Kok P, Braunstein S L 2000 Phys. Rev. A 61 042304

    [7]

    Simon C, Weihs G, Zeilinger A 2000 Phys. Rev. Lett. 84 2993

    [8]

    Wieczorek W, Schmid C, Kiesel N, Pohlner R, Ghne O, Weinfurter H 2008 Phys. Rev. Lett. 101 010503

    [9]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photon. 6 225

    [10]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [11]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. Lett. 83 959

    [12]

    Lamas-Linares A, Howell J, Bouwmeester D 2001 Nature 412 887

    [13]

    Simon C, Bouwmeester D 2003 Phys. Rev. Lett. 91 053601

    [14]

    de Riedmatten H, Scarani V, Marcikic I, Acín A, Tittel W, Zbinden H, Gisin N 2004 J. Mod. Opt. 51 1637

    [15]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [16]

    Ding D, He Y Q, Yan F L, Gao T 2017 arXiv:1705.00392[quant-ph]

    [17]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [18]

    Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501

    [19]

    Vallone G, Ceccarelli R, de Martini F, Mataloni P 2009 Phys. Rev. A 79 030301

    [20]

    Du K, Qiao C F 2012 J. Mod. Opt. 59 611

    [21]

    Ding D, He Y Q, Yan F L, Gao T 2015 Acta Phys. Sin. 64 160301 (in Chinese) [丁东, 何英秋, 闫凤利, 高亭 2015 物理学报 64 160301]

    [22]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46

    [23]

    Walborn S P, Pádua S, Monken C H 2003 Phys. Rev. A 68 042313

    [24]

    Wei T C, Barreiro J T, Kwiat P G 2007 Phys. Rev. A 75 060305

    [25]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [26]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2012 Opt. Express 20 24664

    [27]

    Li X H, Ghose S 2016 Phys. Rev. A 93 022302

    [28]

    Xia Y, Chen Q Q, Song J, Song H S 2012 J. Opt. Soc. Am. B 29 1029

    [29]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [30]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [31]

    He Y Q, Ding D, Yan F L, Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501

    [32]

    Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [33]

    Du F F, Li T, Long G L 2016 Ann. Phys. 375 105

    [34]

    Liu H J, Xia Y, Song J 2016 Quantum Inf. Process. 15 2033

    [35]

    Ren B C, Wang H, Alzahrani F, Hobiny A, Deng F G 2017 Ann. Phys. 385 86

    [36]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328

    [37]

    Li T, Long G L 2016 Phys. Rev. A 94 022343

    [38]

    Wei H R, Deng F G, Long G L 2016 Opt. Express 24 18619

    [39]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [40]

    Sheng Y B, Zhou L 2015 Sci. Rep. 5 7815

    [41]

    Jiang Y X, Guo P L, Gao C Y, Wang H B, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120312

    [42]

    Wu F Z, Yang G J, Wang H B, Xiong J, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120313

    [43]

    Nemoto K, Munro W J 2004 Phys. Rev. Lett. 93 250502

    [44]

    Munro W J, Nemoto K, Beausoleil R G, Spiller T P 2005 Phys. Rev. A 71 033819

    [45]

    Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J, Spiller T P 2005 Phys. Rev. A 71 060302

    [46]

    Lin Q, He B, Bergou J A, Ren Y H 2009 Phys. Rev. A 80 042311

    [47]

    Ding D, Yan F L 2013 Phys. Lett. A 377 1088

    [48]

    Ding D, Yan F L, Gao T 2014 Sci. China: Phys. Mech. Astron. 57 2098

    [49]

    He Y Q, Ding D, Yan F L, Gao T 2015 Opt. Express 23 21671

    [50]

    Zhou L, Sheng Y B 2015 Phys. Rev. A 92 042314

    [51]

    Sheng Y B, Pan J, Guo R, Zhou L, Wang L 2015 Sci. China: Phys. Mech. Astron. 58 060301

    [52]

    He Y Q, Ding D, Yan F L, Gao T 2017 Sci. Rep. 7 15356

  • [1]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żkowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Burnham D C, Weinberg D L 1970 Phys. Rev. Lett. 25 84

    [4]

    Kiess T E, Shih Y H, Sergienko A V, Alley C O 1993 Phys. Rev. Lett. 71 3893

    [5]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A 1995 Phys. Rev. Lett. 75 4337

    [6]

    Kok P, Braunstein S L 2000 Phys. Rev. A 61 042304

    [7]

    Simon C, Weihs G, Zeilinger A 2000 Phys. Rev. Lett. 84 2993

    [8]

    Wieczorek W, Schmid C, Kiesel N, Pohlner R, Ghne O, Weinfurter H 2008 Phys. Rev. Lett. 101 010503

    [9]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photon. 6 225

    [10]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [11]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. Lett. 83 959

    [12]

    Lamas-Linares A, Howell J, Bouwmeester D 2001 Nature 412 887

    [13]

    Simon C, Bouwmeester D 2003 Phys. Rev. Lett. 91 053601

    [14]

    de Riedmatten H, Scarani V, Marcikic I, Acín A, Tittel W, Zbinden H, Gisin N 2004 J. Mod. Opt. 51 1637

    [15]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [16]

    Ding D, He Y Q, Yan F L, Gao T 2017 arXiv:1705.00392[quant-ph]

    [17]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [18]

    Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501

    [19]

    Vallone G, Ceccarelli R, de Martini F, Mataloni P 2009 Phys. Rev. A 79 030301

    [20]

    Du K, Qiao C F 2012 J. Mod. Opt. 59 611

    [21]

    Ding D, He Y Q, Yan F L, Gao T 2015 Acta Phys. Sin. 64 160301 (in Chinese) [丁东, 何英秋, 闫凤利, 高亭 2015 物理学报 64 160301]

    [22]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46

    [23]

    Walborn S P, Pádua S, Monken C H 2003 Phys. Rev. A 68 042313

    [24]

    Wei T C, Barreiro J T, Kwiat P G 2007 Phys. Rev. A 75 060305

    [25]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [26]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2012 Opt. Express 20 24664

    [27]

    Li X H, Ghose S 2016 Phys. Rev. A 93 022302

    [28]

    Xia Y, Chen Q Q, Song J, Song H S 2012 J. Opt. Soc. Am. B 29 1029

    [29]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [30]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [31]

    He Y Q, Ding D, Yan F L, Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501

    [32]

    Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [33]

    Du F F, Li T, Long G L 2016 Ann. Phys. 375 105

    [34]

    Liu H J, Xia Y, Song J 2016 Quantum Inf. Process. 15 2033

    [35]

    Ren B C, Wang H, Alzahrani F, Hobiny A, Deng F G 2017 Ann. Phys. 385 86

    [36]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328

    [37]

    Li T, Long G L 2016 Phys. Rev. A 94 022343

    [38]

    Wei H R, Deng F G, Long G L 2016 Opt. Express 24 18619

    [39]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [40]

    Sheng Y B, Zhou L 2015 Sci. Rep. 5 7815

    [41]

    Jiang Y X, Guo P L, Gao C Y, Wang H B, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120312

    [42]

    Wu F Z, Yang G J, Wang H B, Xiong J, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120313

    [43]

    Nemoto K, Munro W J 2004 Phys. Rev. Lett. 93 250502

    [44]

    Munro W J, Nemoto K, Beausoleil R G, Spiller T P 2005 Phys. Rev. A 71 033819

    [45]

    Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J, Spiller T P 2005 Phys. Rev. A 71 060302

    [46]

    Lin Q, He B, Bergou J A, Ren Y H 2009 Phys. Rev. A 80 042311

    [47]

    Ding D, Yan F L 2013 Phys. Lett. A 377 1088

    [48]

    Ding D, Yan F L, Gao T 2014 Sci. China: Phys. Mech. Astron. 57 2098

    [49]

    He Y Q, Ding D, Yan F L, Gao T 2015 Opt. Express 23 21671

    [50]

    Zhou L, Sheng Y B 2015 Phys. Rev. A 92 042314

    [51]

    Sheng Y B, Pan J, Guo R, Zhou L, Wang L 2015 Sci. China: Phys. Mech. Astron. 58 060301

    [52]

    He Y Q, Ding D, Yan F L, Gao T 2017 Sci. Rep. 7 15356

  • [1] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长量子关联光子对的产生. 物理学报, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] 赖红. 基于广义等距张量的压缩多光子纠缠态量子密钥分发. 物理学报, 2023, 72(17): 170301. doi: 10.7498/aps.72.20230589
    [3] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [4] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [5] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量. 物理学报, 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [6] 宗晓岚, 杨名. 多粒子纠缠的保护方案. 物理学报, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [7] 刘岩, 李健军, 高冬阳, 翟文超, 胡友勃, 郭园园, 夏茂鹏, 郑小兵. I类自发参量下转换相关光子圆环的时间相关特性研究. 物理学报, 2016, 65(19): 194211. doi: 10.7498/aps.65.194211
    [8] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控. 物理学报, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [9] 丁东, 何英秋, 闫凤利, 高亭. 六光子超纠缠态制备方案. 物理学报, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [10] 胡要花. 运动原子多光子J-C模型中的熵交换与纠缠. 物理学报, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [11] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [12] 林青. 利用弱交叉科尔效应实现多光子任意高维空间纠缠态的确定性制备. 物理学报, 2010, 59(5): 2976-2981. doi: 10.7498/aps.59.2976
    [13] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [14] 梁华秋, 刘金明. 噪声环境下基于两体纠缠态的远程态制备. 物理学报, 2009, 58(6): 3692-3698. doi: 10.7498/aps.58.3692
    [15] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [16] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [17] 张英杰, 周 原, 夏云杰. 多光子Tavis-Cummings模型中两纠缠原子的纠缠演化特性. 物理学报, 2008, 57(1): 21-27. doi: 10.7498/aps.57.21
    [18] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [19] 陶孟仙, 路洪, 佘卫龙. 增加光子纠缠相干态的统计性质. 物理学报, 2002, 51(9): 1996-2001. doi: 10.7498/aps.51.1996
    [20] 孙利群, 张彦鹏, 刘亚芳, 唐天同, 杨照金, 向世明. 自发参量下转换双光子场绝对校准光电探测器的方法研究. 物理学报, 2000, 49(4): 724-729. doi: 10.7498/aps.49.724
计量
  • 文章访问数:  7766
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-13
  • 修回日期:  2017-12-18
  • 刊出日期:  2019-03-20

/

返回文章
返回