-
针对空间大功率微波部件中的二次电子倍增效应影响微波部件性能的问题,基于铝阳极氧化产生大深宽比、高孔隙率均匀纳米级多孔结构的特性,结合蒸发镀银技术,提出一种有效降低表面二次电子发射系数的方法.结果表明,相比于未阳极氧化的铝样片,在不清洗样片的情况下(实际的样片表面都会存在吸附或沾污),测试得到二次电子发射系数曲线的第一能量交叉点E1从45 eV增加到77 eV,最大二次电子发射系数SEYmax从2.68减小到1.52;在清洗样片的情况下(清洗是为了去除吸附或沾污,获得理想的表面),测试得到第一能量交叉点E1从40 eV增加到211 eV,最大二次电子发射系数SEYmax从2.55减小到1.36.为了验证本文所提方法对抑制空间大功率微波部件二次电子倍增效应的有效性,分别将获得的未阳极氧化和阳极氧化后的二次电子发射系数数据用于一个X频段阻抗变换器设计中,结果显示,使用本文所提方法后,阻抗变换器的微放电阈值从7000 W提高到125000 W.本文研究的方法不仅对解决空间大功率微波部件的微放电问题有指导意义,而且对真空电子器件、加速器等领域的研究也具有重要参考价值.The multipactor effect is a resonant vacuum electron discharge that can occur in microwave and millimeter-wave subsystems,such as filters,multiplexers,and radio-frequency satellite payloads.In a high-power microwave device,multipator discharge can cause the device to break down,and thus degrading its performance.Fortunately,the multipactor effect can be mitigated by reducing the secondary electron yield (SEY) of the material which a microwave device is made from.Therefore,how to reduce the SEY of material is an important matter.In view of this problem,a new method to reduce the SEY is presented in this paper.This method is based on the fact that when aluminum sheet is treated with anodizing,many porous structures with high height-to-width ratios can be formed on the surface of sheet.These porous structures are conducive to reducing SEY.However,the alumina film covers these porous structures.Because alumina has poor performance in conductivity,the loss of high-power microwave device will increase if the microwave device is anodized.In consequence,the performances of the microwave device will deteriorate.In order to avoid this problem, silver film is chosen,and is electroplated on the anodized aluminum sheet.Although silver film is electroplated on the aluminum sheet,there are still many porous structures on the surface.In order to validate the method in this paper, some aluminum samples are anodized.And then,the SEYs of these samples are obtained by the SEY measurement system.The results show that this method is efficient for reducing the SEY.Compared with the non-anodized sample, the uncleaned sample on whose surface there exists the adsorption or contamination shows that the value of the first energy crossing point of the measured curve of emission coefficient of secondary electrons,E1,increases from 45 eV to 77 eV,and the maximum value of SEY (SEYmax) decreases from 2.68 to 1.52;when the samples are all cleaned (in order to obtain ideal surface by wiping off adsorption or contamination),the value of E1 increases from 40 eV to 211 eV, and the value of SEYmax decreases from 2.55 to 1.36.Furthermore,the multipactor threshold of an X-band impedance transformer is simulated with using these SEY data to validate this method.And it is concluded that compared with the threshold of the original design,the multipactor threshold of the impedance transformer which is treated with the method increases from 7000 W to 125000 W.Therefore,it can be seen that the method presented in this paper is helpful in solving the problem of the multipactor in high-power microwave device for space.Meanwhile,as a usual method,the method can also be used to push forward the researches of vacuum electron devices and accelerators.
-
Keywords:
- anodization /
- porous structures /
- second electron yield /
- multipactor threshold
[1] Zhang N, Cao M, Cui W Z, Hu T C, Wang R, Li Y 2015 Acta Phys. Sin. 64 207901 (in Chinese) [张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵 2015 物理学报 64 207901]
[2] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 物理学报 62 077901]
[3] Cao G M, Nie Y, Wang J Q 2005 J. Astron. Metro. Measure. 25 36 (in Chinese) [曹桂明, 聂莹, 王积勤 2005 宇航计测技术 25 36]
[4] Arregui I, Teberio F, Arnedo I, Lujambio A, Chudzik M, Benito D, Lopetegi T, Jost R, Grtz F J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D, Laso M A G 2013 IEEE Trans. MTT 61 4376
[5] Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. MTT 60 2093
[6] Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacu. Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]
[7] Aguilera L, Montero I, Dvila M E, Ruiz A, Galn L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104
[8] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[9] Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905
[10] He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122
[11] Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese) [叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901]
[12] Chang C, Huang H, Liu G Z, Chen C H, Hou Q, Fang J Y, Zhu X X, Zhang Y P 2009 J. Appl. Phys. 105 123305
[13] Huang G S, Tian P K, Guan Y Q, Qu Y, Zhang X 2014 Space Elec. Tech. 11 97 (in Chinese) [黄光荪, 田普科, 关跃强, 曲媛, 张璇 2014 空间电子技术 11 97]
[14] Liu S 2013 M. S. Thesis (Changsha: Hunan Normal University) (in Chinese) [刘书 2013 硕士学位论文 (长沙: 湖南师范大学)]
[15] L F 2010 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese) [吕芳 2010 硕士学位论文 (哈尔滨: 哈尔滨理工大学)]
[16] Zhu J 2005 M. S. Thesis (Tianjin: Tianjin University) (in Chinese) [朱静 2005 硕士学位论文 (天津: 天津大学)]
[17] Zhang Y, Feng H, Jin Y F, Yang Y, Wu X B 2009 Plat. Finish. 31 9 (in Chinese) [张勇, 冯辉, 金远锋, 杨勇, 武行兵 2009 电镀与精饰 31 9]
[18] Zhu X F, Song Y, Xiao Y H, Zhu Q, Gao K, Lu L D 2007 Chin. J. Vacu. Sci. Tech. 27 113 (in Chinese) [朱绪飞, 宋晔, 肖迎红, 朱晴, 高魁, 陆路德 2007 真空科学与技术学报 27 113]
[19] Ren J J, Zuo Y 2012 J. Beijing Univ. Chem. Tech. 39 74 (in Chinese) [任建军, 左禹 2012 北京化工大学学报 39 74]
[20] Feng G B, Cui W Z, Zhang N, Cao M, Liu C L 2017 Chin. Phys. B 26 097901
[21] He Y, Li J, Cao M, Cui W Z, Liu C L 2017 Chin. Space Sci. Tech. 37 17 (in Chinese) [何韵, 李军, 曹猛, 崔万照, 刘纯亮 2017 中国空间科学技术 37 17]
[22] Bai C J, Cui W Z, Ye M, He Y N 2017 Chin. Space Sci. Tech. 37 61 (in Chinese) [白春江, 崔万照, 叶鸣, 贺永宁 2017 中国空间科学技术 37 61]
[23] Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋哗, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]
[24] Zhu X F, Song Y, Yu D L, Zhang C S, Yao W 2013 Electronchem. Commun. 29 71
[25] Zhang Y L, Cheng W J, Du F, Zhang S Y, Ma W H, Li D D, Song Y, Zhu X F 2015 Electrochim. Acta 180 147
[26] Liu P, Jiang Y X, Geng M, Zheng J, Sun C, Cai Y W, Zhu X F 2011 Chin. J. Vacu. Sci. Tech. 31 119 (in Chinese) [刘鹏, 姜元霞, 耿敏, 郑杰, 孙晨, 蔡宇武, 朱绪飞 2011 真空科学与技术学报 31 119]
[27] Zhao S W, Xing J, Fan H W, Zhang S Y, Li D D, Zhu X F 2017 J. Electrochem. Soc. 164 E187
[28] Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chin. J. Vacu. Sci. Tech. 34 554 (in Chinese) [张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]
[29] Cui W Z, Li Y, Yang J, Hu T C, Wang X B, Wang R, Zhang N, Zhang H T, He Y N 2016 Chin. Phys. B 25 068401
[30] Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402
-
[1] Zhang N, Cao M, Cui W Z, Hu T C, Wang R, Li Y 2015 Acta Phys. Sin. 64 207901 (in Chinese) [张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵 2015 物理学报 64 207901]
[2] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 物理学报 62 077901]
[3] Cao G M, Nie Y, Wang J Q 2005 J. Astron. Metro. Measure. 25 36 (in Chinese) [曹桂明, 聂莹, 王积勤 2005 宇航计测技术 25 36]
[4] Arregui I, Teberio F, Arnedo I, Lujambio A, Chudzik M, Benito D, Lopetegi T, Jost R, Grtz F J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D, Laso M A G 2013 IEEE Trans. MTT 61 4376
[5] Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. MTT 60 2093
[6] Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacu. Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]
[7] Aguilera L, Montero I, Dvila M E, Ruiz A, Galn L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104
[8] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[9] Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905
[10] He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122
[11] Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese) [叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901]
[12] Chang C, Huang H, Liu G Z, Chen C H, Hou Q, Fang J Y, Zhu X X, Zhang Y P 2009 J. Appl. Phys. 105 123305
[13] Huang G S, Tian P K, Guan Y Q, Qu Y, Zhang X 2014 Space Elec. Tech. 11 97 (in Chinese) [黄光荪, 田普科, 关跃强, 曲媛, 张璇 2014 空间电子技术 11 97]
[14] Liu S 2013 M. S. Thesis (Changsha: Hunan Normal University) (in Chinese) [刘书 2013 硕士学位论文 (长沙: 湖南师范大学)]
[15] L F 2010 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese) [吕芳 2010 硕士学位论文 (哈尔滨: 哈尔滨理工大学)]
[16] Zhu J 2005 M. S. Thesis (Tianjin: Tianjin University) (in Chinese) [朱静 2005 硕士学位论文 (天津: 天津大学)]
[17] Zhang Y, Feng H, Jin Y F, Yang Y, Wu X B 2009 Plat. Finish. 31 9 (in Chinese) [张勇, 冯辉, 金远锋, 杨勇, 武行兵 2009 电镀与精饰 31 9]
[18] Zhu X F, Song Y, Xiao Y H, Zhu Q, Gao K, Lu L D 2007 Chin. J. Vacu. Sci. Tech. 27 113 (in Chinese) [朱绪飞, 宋晔, 肖迎红, 朱晴, 高魁, 陆路德 2007 真空科学与技术学报 27 113]
[19] Ren J J, Zuo Y 2012 J. Beijing Univ. Chem. Tech. 39 74 (in Chinese) [任建军, 左禹 2012 北京化工大学学报 39 74]
[20] Feng G B, Cui W Z, Zhang N, Cao M, Liu C L 2017 Chin. Phys. B 26 097901
[21] He Y, Li J, Cao M, Cui W Z, Liu C L 2017 Chin. Space Sci. Tech. 37 17 (in Chinese) [何韵, 李军, 曹猛, 崔万照, 刘纯亮 2017 中国空间科学技术 37 17]
[22] Bai C J, Cui W Z, Ye M, He Y N 2017 Chin. Space Sci. Tech. 37 61 (in Chinese) [白春江, 崔万照, 叶鸣, 贺永宁 2017 中国空间科学技术 37 61]
[23] Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋哗, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]
[24] Zhu X F, Song Y, Yu D L, Zhang C S, Yao W 2013 Electronchem. Commun. 29 71
[25] Zhang Y L, Cheng W J, Du F, Zhang S Y, Ma W H, Li D D, Song Y, Zhu X F 2015 Electrochim. Acta 180 147
[26] Liu P, Jiang Y X, Geng M, Zheng J, Sun C, Cai Y W, Zhu X F 2011 Chin. J. Vacu. Sci. Tech. 31 119 (in Chinese) [刘鹏, 姜元霞, 耿敏, 郑杰, 孙晨, 蔡宇武, 朱绪飞 2011 真空科学与技术学报 31 119]
[27] Zhao S W, Xing J, Fan H W, Zhang S Y, Li D D, Zhu X F 2017 J. Electrochem. Soc. 164 E187
[28] Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chin. J. Vacu. Sci. Tech. 34 554 (in Chinese) [张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]
[29] Cui W Z, Li Y, Yang J, Hu T C, Wang X B, Wang R, Zhang N, Zhang H T, He Y N 2016 Chin. Phys. B 25 068401
[30] Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402
计量
- 文章访问数: 7014
- PDF下载量: 243
- 被引次数: 0