搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃-橡胶混合颗粒体系的弹性行为研究

赵子渊 李昱君 王富帅 张祺 厚美瑛 李文辉 马钢

引用本文:
Citation:

玻璃-橡胶混合颗粒体系的弹性行为研究

赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢

Elastic behavior of glass-rubber mixed particles system

Zhao Zi-Yuan, Li Yu-Jun, Wang Fu-Shuai, Zhang Qi, Hou Mei-Ying, Li Wen-Hui, Ma Gang
PDF
导出引用
  • 废旧橡胶制品颗粒与砂土颗粒混合物作为建筑填充材料具有环保、轻质、减震效果好等特点.软硬组分的混合比例可以调制体系力学性能从而实现兼顾材料柔韧性与强度的需求,但细观层面上材料性能改变的原因尚不明确.本文主要研究玻璃-橡胶混合颗粒体系的弹性行为及其微观机制.利用飞行时间法测量混合材料等效动弹性模量,发现随着橡胶颗粒增加,体系逐渐从类玻璃刚性行为转变为类橡胶柔性行为.离散元模拟结果与实验结果类似.此外,模拟显示低橡胶颗粒占比样品内主要由玻璃颗粒构成主力链结构,而橡胶颗粒基本不参与强力链的构成.当橡胶颗粒占比较大时,玻璃颗粒和橡胶颗粒共同构成主力链网络结构,但颗粒间法向接触力分布相对更为均匀,可视为玻璃颗粒悬浮于橡胶颗粒中.基于上述结果,提出了改进的等效介质理论,用于描述混合颗粒体系的弹性行为.研究认为:橡胶颗粒占比较小时内部颗粒的变形相对均匀,材料近似满足等应变假设,视为并联弹簧模型;橡胶颗粒占比较大时混合材料近似满足等应力假设,视为串联弹簧模型.两种模型得到的结果与模拟结果一致.上述结果有利于从微观角度揭示混合颗粒材料弹性行为的变化机制.
    The mixture of scrap rubber particles and sands has been extensively used as geotechnical engineering recycled materials due to its environmental protection performance, light quality and excellent energy dissipation capability. The mechanical properties of the system can be modulated by the mixing ratio between soft and hard components. But the reasons for such a change on a particle scale are not yet clear. In this paper the elastic behaviors of glass-rubber mixed particles are studied by the sound velocity measurement and discrete element simulation. The velocity of compressional wave and the dynamic effective elastic modulus of mixed sample under hydrostatic stress are measured by time-of-flight method. It is found that the wave velocity is almost constant and the modulus decreases slightly with the proportion of rubber particles increasing to 20%. After that the wave velocity and modulus decrease rapidly and the system transforms from rigid-like behavior to soft-like behavior until the proportion of rubber particles reaches to 80%. When the proportion of rubber particles are more than 80%, the compressional wave velocity and the dynamic effective elastic modulus remain stable again. Such experimental results are consistent with discrete element method analyses which provide more in-depth insights into the micromechanics of the mixture. The simulation reveals that at low rubber fraction the main force chain structure is basically composed of glass particles without rubber particles, which accounts for the phenomenon that the velocity of the compressional wave is basically constant. When the glass particles and rubber particles co-construct the main force chain structure, the distribution of the normal contact force is relatively uniform at high rubber fraction. This can be regarded as the glass particles suspending in the rubber particles. An improved effective medium theory is proposed to describe the elastic behavior of the mixed particles system. It is considered that the deformation of the internal particles is relatively uniform for glass dominated mixture which satisfies the isostress hypothesis. A parallel spring model can be used to describe the nonlinear contact model of particles in such materials. On the other hand, rubber dominated mixture approximately satisfies the isostrain hypothesis, which can be described by a series spring model. The outcomes of such models are in agreement with the simulation results for rigid glass dominated mixture and soft rubber dominated mixture. This study is helpful in exploring the mechanisms that are responsible for the macroscale elastic behavior of mixed granular material from the microscopic point of view.
      通信作者: 张祺, zhangqi@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11502155,11474326,U1738120,51708385)和中国科学院空间科学战略性先导科技专项(批准号:XDA04020200)资助的课题.
      Corresponding author: Zhang Qi, zhangqi@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11502155, 11474326, U1738120, 51708385) and the Strategic Priority Science and Technology Projects in Space Science of Chinese Academy of Sciences (Grant No. XDA04020200).
    [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Liu C Q, Sun Q C, Wang G Q 2014 Mech. Engineer. 36 716 (in Chinese)[刘传奇, 孙其诚, 王光谦 2014 力学与实践 36 716]

    [3]

    Kou B Q, Cao Y X, Li J D, Xia C J, Li Z F, Dong H P, Zhang A, Zhang J, Kob W, Wang Y J 2017 Nature 551 360

    [4]

    Wang S M, Gao Y F 2007 Rock and Soil Mechanics 28 1001 (in Chinese)[王庶懋, 高玉峰 2007 岩土力学 28 1001]

    [5]

    Chen Y N, Xiao J M 2015 Chin. J. Engineer. 37 1498 (in Chinese)[陈亚楠, 肖久梅 2015 工程科学学报 37 1498]

    [6]

    Liu W X, Wu P W, Dai J H 2017 Develop. Appl. Mater. 32 27 (in Chinese)[柳文鑫, 吴平伟, 戴金辉 2017 材料开发与应用 32 27]

    [7]

    Li L H, Xiao H L, Tang H M, Hu Q Z, Sun M J, Sun L 2014 Rock and Soil Mechanics 35 359 (in Chinese)[李丽华, 肖衡林, 唐辉明, 胡其志, 孙淼军, 孙龙 2014 岩土力学 35 359]

    [8]

    Lee J S, Dodds J, Santamarina J C 2007 J. Mater. Civil Engineer. 19 179

    [9]

    Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64 154502 (in Chinese)[陈琼, 王青花, 赵闯, 张祺, 厚美瑛 2015 物理学报 64 154502]

    [10]

    Qian Z W 1993 Appl. Acoust. 12 1 (in Chinese)[钱祖文 1993 应用声学 12 1]

    [11]

    Jia X P, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [12]

    Jia X P 2004 Phys. Rev. Lett. 93 154303

    [13]

    Zhang P, Zhao X D, Zhang G H, Zhang Q, Sun Q C, Hou Z J, Dong J J 2016 Acta Phys. Sin. 65 024501 (in Chinese)[张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军 2016 物理学报 65 024501]

    [14]

    Zheng H P, Jiang Y M, Peng Z, Fu L P 2012 Acta Phys. Sin. 61 214502 (in Chinese)[郑鹤鹏, 蒋亦民, 彭政, 符力平 2012 物理学报 61 214502]

    [15]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [16]

    Zhou Z G, Zong J, Wang W G, Hou M Y 2017 Acta Phys. Sin. 66 154502 (in Chinese)[周志刚, 宗谨, 王文广, 厚美瑛 2017 物理学报 66 154502]

    [17]

    Khidas Y, Jia X P 2012 Phys. Rev. E:Stat. Nonlin. Soft Matter Phys. 85 051302

    [18]

    Liu X Y, Jiao T F, Ma L, Su J Y, Chen W Z, Sun Q C, Huang D C 2017 Granular Matter 19 55

    [19]

    Taghizadeh K, Steeb H, Magnanimo V, Luding S 2017 Powders & Grains Montpellier, France, July 3-7 2017 p12019

    [20]

    Qian Z W 2012 Acta Phys. Sin. 61 134301 (in Chinese)[钱祖文 2012 物理学报 61 134301]

    [21]

    Di Renzo A, Di Maio F P 2004 Chem. Engineer. Sci. 59 525

    [22]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese)[韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501]

    [23]

    Chen H, Liu Y L, Zhao X Q, Xiao Y G, Liu Y 2015 Powder Technol. 283 607

    [24]

    Snoeijer J H, Vlugt T J, van Hecke M, van Saarloos W 2004 Phys. Rev. Lett. 92 054302

    [25]

    Hashin Z, Shtrikman S 1963 J. Mech. Phys. Solids 11 127

    [26]

    Yang X S, Ma J, Liu L Q 2004 Seismol. Geol. 26 484 (in Chinese)[杨晓松, 马瑾, 刘力强 2004 地震地质 26 484]

  • [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Liu C Q, Sun Q C, Wang G Q 2014 Mech. Engineer. 36 716 (in Chinese)[刘传奇, 孙其诚, 王光谦 2014 力学与实践 36 716]

    [3]

    Kou B Q, Cao Y X, Li J D, Xia C J, Li Z F, Dong H P, Zhang A, Zhang J, Kob W, Wang Y J 2017 Nature 551 360

    [4]

    Wang S M, Gao Y F 2007 Rock and Soil Mechanics 28 1001 (in Chinese)[王庶懋, 高玉峰 2007 岩土力学 28 1001]

    [5]

    Chen Y N, Xiao J M 2015 Chin. J. Engineer. 37 1498 (in Chinese)[陈亚楠, 肖久梅 2015 工程科学学报 37 1498]

    [6]

    Liu W X, Wu P W, Dai J H 2017 Develop. Appl. Mater. 32 27 (in Chinese)[柳文鑫, 吴平伟, 戴金辉 2017 材料开发与应用 32 27]

    [7]

    Li L H, Xiao H L, Tang H M, Hu Q Z, Sun M J, Sun L 2014 Rock and Soil Mechanics 35 359 (in Chinese)[李丽华, 肖衡林, 唐辉明, 胡其志, 孙淼军, 孙龙 2014 岩土力学 35 359]

    [8]

    Lee J S, Dodds J, Santamarina J C 2007 J. Mater. Civil Engineer. 19 179

    [9]

    Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64 154502 (in Chinese)[陈琼, 王青花, 赵闯, 张祺, 厚美瑛 2015 物理学报 64 154502]

    [10]

    Qian Z W 1993 Appl. Acoust. 12 1 (in Chinese)[钱祖文 1993 应用声学 12 1]

    [11]

    Jia X P, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [12]

    Jia X P 2004 Phys. Rev. Lett. 93 154303

    [13]

    Zhang P, Zhao X D, Zhang G H, Zhang Q, Sun Q C, Hou Z J, Dong J J 2016 Acta Phys. Sin. 65 024501 (in Chinese)[张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军 2016 物理学报 65 024501]

    [14]

    Zheng H P, Jiang Y M, Peng Z, Fu L P 2012 Acta Phys. Sin. 61 214502 (in Chinese)[郑鹤鹏, 蒋亦民, 彭政, 符力平 2012 物理学报 61 214502]

    [15]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [16]

    Zhou Z G, Zong J, Wang W G, Hou M Y 2017 Acta Phys. Sin. 66 154502 (in Chinese)[周志刚, 宗谨, 王文广, 厚美瑛 2017 物理学报 66 154502]

    [17]

    Khidas Y, Jia X P 2012 Phys. Rev. E:Stat. Nonlin. Soft Matter Phys. 85 051302

    [18]

    Liu X Y, Jiao T F, Ma L, Su J Y, Chen W Z, Sun Q C, Huang D C 2017 Granular Matter 19 55

    [19]

    Taghizadeh K, Steeb H, Magnanimo V, Luding S 2017 Powders & Grains Montpellier, France, July 3-7 2017 p12019

    [20]

    Qian Z W 2012 Acta Phys. Sin. 61 134301 (in Chinese)[钱祖文 2012 物理学报 61 134301]

    [21]

    Di Renzo A, Di Maio F P 2004 Chem. Engineer. Sci. 59 525

    [22]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese)[韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501]

    [23]

    Chen H, Liu Y L, Zhao X Q, Xiao Y G, Liu Y 2015 Powder Technol. 283 607

    [24]

    Snoeijer J H, Vlugt T J, van Hecke M, van Saarloos W 2004 Phys. Rev. Lett. 92 054302

    [25]

    Hashin Z, Shtrikman S 1963 J. Mech. Phys. Solids 11 127

    [26]

    Yang X S, Ma J, Liu L Q 2004 Seismol. Geol. 26 484 (in Chinese)[杨晓松, 马瑾, 刘力强 2004 地震地质 26 484]

  • [1] 成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性 及影响因素分析. 物理学报, 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [2] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析. 物理学报, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [3] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析. 物理学报, 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [4] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性. 物理学报, 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [5] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析. 物理学报, 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [6] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟. 物理学报, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [7] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟. 物理学报, 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [8] 陈琼, 王青花, 赵闯, 张祺, 厚美瑛. 玻璃-橡胶混合颗粒的力学响应研究. 物理学报, 2015, 64(15): 154502. doi: 10.7498/aps.64.154502
    [9] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法. 物理学报, 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [10] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [11] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响. 物理学报, 2014, 63(17): 174501. doi: 10.7498/aps.63.174501
    [12] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟. 物理学报, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [13] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [14] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [15] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究. 物理学报, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [16] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [17] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定. 物理学报, 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [18] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [19] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟. 物理学报, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [20] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
计量
  • 文章访问数:  6504
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-30
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-05-20

/

返回文章
返回