搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型模拟电路低剂量率辐照损伤增强效应的研究与评估

李小龙 陆妩 王信 郭旗 何承发 孙静 于新 刘默寒 贾金成 姚帅 魏昕宇

引用本文:
Citation:

典型模拟电路低剂量率辐照损伤增强效应的研究与评估

李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇

Estimation of low-dose-rate degradation on bipolar linear circuits using different accelerated evaluation methods

Li Xiao-Long, Lu Wu, Wang Xin, Guo Qi, He Cheng-Fa, Sun Jing, Yu Xin, Liu Mo-Han, Jia Jin-Cheng, Yao Shuai, Wei Xin-Yu
PDF
导出引用
  • 采用变剂量率和变温两种辐照方法,对4款典型模拟电路的低剂量率辐照损伤特性及变化规律进行了研究与评估,分析了两种辐照方法下其辐照敏感参数的变化,比较了不同辐照方式下器件的退化程度,讨论了这两种实验室加速评估低剂量率辐照损伤方法的机理.结果显示,变剂量率辐照可以较快地预测实际低剂量率下的辐照损伤趋势,且在较低的总剂量下能够给出不太保守的估计,但其预测的总剂量受到器件退化速度的影响;变温辐照加速评估方法能够保守地估计其低剂量率下的辐照损伤,其评估范围不仅可达1000 Gy (Si),且可将评估时间缩短为12 h左右.研究结果表明,双极电路的低剂量率辐照损伤增强效应与感生的界面态密度和氢化的氧空位缺陷有关,辐照时剂量率和温度的改变会促进界面态的生长,抑制界面态的钝化作用,从而激发器件的辐照损伤潜能.
    The linear bipolar devices and integrated circuits (ICs) which are subjected to ionizing radiation exhibit parametric degradations due to current-gain decrease, and the amount of degradation on various types of bipolar devices is much more significant at low-dose-rate than at high-dose-rate. Such an enhanced low-dose-rate sensitivity (ELDRS) is considered to be one of the major challenges for radiation-tolerance testing intended for space systems. Therefore, it is of great significance to explore an efficient and practical test for the ELDRS in the linear bipolar devices and ICs. The different experiments have been implemented on four types of bipolar ICs for evaluating their responses to low-dose-rate irradiation. The experiments involve the dose rate switching approach performed under high to low-dose-rate irradiation and temperature switching approach performed under high to low temperature irradiation. Good agreement is observed between predictive curves obtained at dose rate switching irradiation and the low-dose-rate results, and the irradiation time for the dose rate switching approach is reduced from 4 months to a week. Further, the results also suggest that the device degradation rate can affect the prediction of the total dose. This is because the curves examined at different doses have a lot of overlap when the devices with fast degradation rates are performed. In addition to temperature switching irradiation, the radiation response of the same type of device is much more significant than that obtained in low-dose rate irradiation, and this method will shorten the irradiation time to 12 h. Based on the analysis of mechanisms behind the switched dose rate and temperature irradiation, switching temperature irradiation can accelerate the release of protons and buildup of interface traps, which is the key physical mechanism for ELDRS. Firstly, a higher irradiation temperature can enhance the transport of holes and release of protons to form interface traps, resulting in the enhanced degradation occurring at first dose examined. Further, the reducing temperature sequence suppresses the hydrogen dimerization process during the irradiation that follows, which is strongly temperature dependent and contributes to interface trap annealing. Moreover, further decrease in temperature can restrict the interface trap annealing because the barrier for this process is higher and it has less opportunity to take place at lower temperature. Additionally, the hydrogen molecules converted from hydrogen dimerization may extend the liberation of protons, by the hydrogen molecules cracking mechanisms, leading to the additional degradation. Therefore, the temperature switching irradiation is shown to be a conservative and efficient method for ELDRS in bipolar devices, and this provides an insight into hardness assurance testing.
      通信作者: 陆妩, luwu@ms.xjb.ac.cn
    • 基金项目: 国家自然科学基金(批准号:U1532261,U1630141)和中国科学院西部之光项目(批准号:2016-QNXZ-B-7)资助的课题.
      Corresponding author: Lu Wu, luwu@ms.xjb.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1532261, U1630141) and the West Light Foundation of the Chinese Academy of Sciences China (Grant No. 2016-QNXZ-B-7).
    [1]

    Enlow E W, Pease R L, Combs S, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Barnaby H J, Tausch H J, Turfer R, Cole P, Baker P, Pease R L 1996 IEEE Trans. Nucl. Sci. 43 3040

    [3]

    Pease R L, Adell P C, Rax B G 2008 IEEE Trans. Nucl. Sci. 55 3169

    [4]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901

    [5]

    Chavez R M, Rax B G, Scheickrad L Z, Jonston A H 2005 IEEE Radiation Effects Data Workshop Record Washington, USA, July 11-15, 2005 p144

    [6]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871

    [7]

    McLean F B 1980 IEEE Trans. Nucl. Sci. 27 1651

    [8]

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101]

    [9]

    Boch J, Saigne F, Schrimpf R D, Fleetwood D M, Ducret S, Dusseau L, David J P, Fesquet J, Gasiot J, Ecoffet R 2004 IEEE Trans. Nucl. Sci. 51 2896

    [10]

    Boch J, Saigne F, Schrimpf R D, Vaille J R, Dusseau L, Ducret S, Bernard M, Lorfevre E, Chatry C 2005 IEEE Trans. Nucl. Sci. 52 2616

    [11]

    Boch J, Velo Y G, Saigne F, Roche N J H, Schrimpf R D, Vaille J R, Dusseau L, Chatry C, Lorfevre E, Ecoffet R, Touboul A D 2009 IEEE Trans. Nucl. Sci. 56 3347

    [12]

    Velo Y G, Boch J, Saigne F, Roche N H, Perez S, Vaille J R, Deneau C, Dusseau L, Lorfevre E, Schrimpf R D 2011 IEEE Trans. Nucl. Sci. 58 2953

    [13]

    Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769 (in Chinese) [陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769]

    [14]

    Deng W, Lu W, Guo Q, He C F, Wu X, Wang X, Zhang J X, Zhang X F, Zheng Q W, Ma W Y 2014 Atomic Energy Science and Technology 48 727 (in Chinese) [邓伟, 陆妩, 郭旗, 何承发, 吴雪, 王信, 张晋新, 张孝富, 郑齐文, 马武英 2014 原子能科学技术 48 727]

    [15]

    Ma W Y, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170 (in Chinese) [马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170]

    [16]

    Boch J, Saigne F, Carlotti J F 2006 Appl. Phys. Lett. 88 232113

    [17]

    Boch J, Saigne F, Touboul A D, Schrimpf R D 2006 Appl. Phys. Lett. 89 042108

    [18]

    Tuttle B R, Pantelides S T 2009 Phys. Rev. B 77 115206

    [19]

    Rowsey N L, Lw M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937

    [20]

    Hughart D R, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2930

    [21]

    Hughart D R, Schrimpf R D, Fleetwood D M, Rowsey N L, Lw M E, Tuttle B R, Pantelides S T 2012 IEEE Trans. Nucl. Sci. 59 3087

  • [1]

    Enlow E W, Pease R L, Combs S, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Barnaby H J, Tausch H J, Turfer R, Cole P, Baker P, Pease R L 1996 IEEE Trans. Nucl. Sci. 43 3040

    [3]

    Pease R L, Adell P C, Rax B G 2008 IEEE Trans. Nucl. Sci. 55 3169

    [4]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901

    [5]

    Chavez R M, Rax B G, Scheickrad L Z, Jonston A H 2005 IEEE Radiation Effects Data Workshop Record Washington, USA, July 11-15, 2005 p144

    [6]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871

    [7]

    McLean F B 1980 IEEE Trans. Nucl. Sci. 27 1651

    [8]

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101]

    [9]

    Boch J, Saigne F, Schrimpf R D, Fleetwood D M, Ducret S, Dusseau L, David J P, Fesquet J, Gasiot J, Ecoffet R 2004 IEEE Trans. Nucl. Sci. 51 2896

    [10]

    Boch J, Saigne F, Schrimpf R D, Vaille J R, Dusseau L, Ducret S, Bernard M, Lorfevre E, Chatry C 2005 IEEE Trans. Nucl. Sci. 52 2616

    [11]

    Boch J, Velo Y G, Saigne F, Roche N J H, Schrimpf R D, Vaille J R, Dusseau L, Chatry C, Lorfevre E, Ecoffet R, Touboul A D 2009 IEEE Trans. Nucl. Sci. 56 3347

    [12]

    Velo Y G, Boch J, Saigne F, Roche N H, Perez S, Vaille J R, Deneau C, Dusseau L, Lorfevre E, Schrimpf R D 2011 IEEE Trans. Nucl. Sci. 58 2953

    [13]

    Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769 (in Chinese) [陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769]

    [14]

    Deng W, Lu W, Guo Q, He C F, Wu X, Wang X, Zhang J X, Zhang X F, Zheng Q W, Ma W Y 2014 Atomic Energy Science and Technology 48 727 (in Chinese) [邓伟, 陆妩, 郭旗, 何承发, 吴雪, 王信, 张晋新, 张孝富, 郑齐文, 马武英 2014 原子能科学技术 48 727]

    [15]

    Ma W Y, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170 (in Chinese) [马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170]

    [16]

    Boch J, Saigne F, Carlotti J F 2006 Appl. Phys. Lett. 88 232113

    [17]

    Boch J, Saigne F, Touboul A D, Schrimpf R D 2006 Appl. Phys. Lett. 89 042108

    [18]

    Tuttle B R, Pantelides S T 2009 Phys. Rev. B 77 115206

    [19]

    Rowsey N L, Lw M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937

    [20]

    Hughart D R, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2930

    [21]

    Hughart D R, Schrimpf R D, Fleetwood D M, Rowsey N L, Lw M E, Tuttle B R, Pantelides S T 2012 IEEE Trans. Nucl. Sci. 59 3087

  • [1] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [2] 胡杨, 孙江, 张金海, 蔡丹, 杨海亮, 苏兆锋, 孙铁平, 孙剑锋, 赵博文. “强光一号”加速器短γ二极管径向箍缩率计算方法. 物理学报, 2021, 70(18): 185202. doi: 10.7498/aps.70.20210472
    [3] 缑石龙, 马武英, 姚志斌, 何宝平, 盛江坤, 薛院院, 潘琛. 基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制. 物理学报, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [4] 赵金宇, 杨剑群, 董磊, 李兴冀. 氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析. 物理学报, 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [5] 陈钱, 马英起, 陈睿, 朱翔, 李悦, 韩建伟. 激光模拟瞬态剂量率闩锁效应电流特征机制研究. 物理学报, 2019, 68(12): 124202. doi: 10.7498/aps.68.20190237
    [6] 李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕. 一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法. 物理学报, 2016, 65(11): 114204. doi: 10.7498/aps.65.114204
    [7] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅. 双极电压比较器电离辐射损伤及剂量率效应分析. 物理学报, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [8] 孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘. 不同剂量率下锗硅异质结双极晶体管电离损伤效应研究. 物理学报, 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [9] 黄建国, 刘丹秋, 高著秀, 李宏伟, 蔡明辉, 韩建伟. 空间微小碎片累积撞击损伤效应加速模拟研究. 物理学报, 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [10] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理. 物理学报, 2012, 61(24): 246101. doi: 10.7498/aps.61.246101
    [11] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [12] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [13] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [14] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究. 物理学报, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [15] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究. 物理学报, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [16] 郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发. 不同发射极面积npn晶体管高低剂量率辐射损伤特性. 物理学报, 2009, 58(8): 5572-5577. doi: 10.7498/aps.58.5572
    [17] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [18] 何宝平, 郭红霞, 龚建成, 王桂珍, 罗尹虹, 李永宏. 浮栅ROM集成电路空间低剂量率辐射失效时间预估. 物理学报, 2004, 53(9): 3125-3129. doi: 10.7498/aps.53.3125
    [19] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  7262
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 修回日期:  2018-02-09
  • 刊出日期:  2018-05-05

/

返回文章
返回