搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用衍射掩模产生白光横向平顶光束

陈芳萍 张晓婷 刘楚嘉 漆宇 庄其仁

引用本文:
Citation:

采用衍射掩模产生白光横向平顶光束

陈芳萍, 张晓婷, 刘楚嘉, 漆宇, 庄其仁

Horizontal white light flat-topped beams produced by the diffraction mask

Chen Fang-Ping, Zhang Xiao-Ting, Liu Chu-Jia, Qi Yu, Zhuang Qi-Ren
PDF
导出引用
  • 白光横向平顶光束在定向背光式自由立体显示器中有重要应用.本文提出一种采用带蝶形小孔阵列的衍射掩模片获得白光横向平顶光束的方法.根据广义惠更斯-菲涅耳衍射积分和多波长叠加原理,推导出光强分布计算式.设计一套实验装置,数值模拟并实验验证出射光束在不同距离的横向光强分布以及小孔蝶形凹度(蝶形中心高度与边长的比值)对横向光强分布的影响.结果表明:当选择小孔蝶形凹度为0.50–0.66时,可以得到平顶因子F ≥ 0.89的白光横向平顶光束,横向平顶光束的宽度随着传输距离的增大而增大,而平顶因子基本不变.实验还发现柱面透镜的折射色散和衍射色散可以互相抵消,使白光横向平顶光束基本无色散.
    The flat-topped beam is a special beam with wide applications in the directional backlight autostereoscopic display, and it is used as a directional backlight in the horizontal direction. However, it is still challenge to white light flat-topped beams with the traditional flat-topped beam shaper. In this paper, it is proposed that diffraction mask with butterfly-shaped hole arrays and cylindrical lens be used to produce the horizontal flat-topped white beams. The surface of the LCD backlight mask is covered by a layer of diffraction mask, where the butterfly-shaped holes are arranged in line along the vertical direction. Simultaneously, the height and width, hole center height are kept identical, and the ratio between the center depth and the perimeter of butterfly-shape hole is defined as the concavity. A flat convex cylindrical lens is placed in front of diffraction mask gaplessly. The uniform light field from LCD backlight is transformed into the white light flat-topped beams and projected on the receiving screen by the diffraction mask and cylindrical lens. Based on the Huygens-Fresnel diffraction integral, the intensity distribution formula of diffraction of the single wavelength light source on the receiving screen is derived. Furthermore, the intensity distribution formula on the screen is derived by super positioning the multiple wavelengths. The proposed method is verified by both numerical simulation and experimental validation. Numerical simulations elucidate the effects of the different transmission distance and butterfly hole concavity on the white light flat-topped beam flat-topped factor. The stimulated results show that the propagation distance does not influence the white light beam transverse intensity distribution characteristics of flat top. With the beam propagation distance increasing, the horizontal width of flat-topped beam becomes larger. When the concavity of the butterfly hole decreases, light intensity distribution shifts from Gaussian to flat type. However, the flat-topped factor decreases when the butterfly concavity is too small. The optimal concavity varies from 0.4 to 0.6, where the flattened factor of the transverse flat-topped beams reaches 0.89. In the experiments, films are produced with the diffraction of butterfly hole array mask. The height and width of butterfly are both 48 μm, and the concavities of the butterfly are 1, 0.83, 0.66 and 0.83 respectively. The cylindrical lens adopts PMMA cylindrical lens grating plate, with a thickness of 8 mm, a grating density for 18 line/inch, and the cylindrical lens curvature radius R is 2.67 mm. The experimental results show that the beam transmission is consistent with the result of numerical simulation. When concavity of the butterfly is 0.5, the flat factors of the white light horizontal of flat-topped beams are higher than 0.89 in a range from 500 mm to 2000 mm. Moreover, we also discuss the dispersion effects of shaft flat-topped beams and off-axis flat-topped beams, showing that the refraction and dispersion of the cylindrical lens can cancel out each other, so that the horizontal flat-toped white beams is basically dispersionless.
      通信作者: 庄其仁, qrzhuang@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61178015,61605049)和福建省科技重大项目(批准号:2016H6016)资助的课题.
      Corresponding author: Zhuang Qi-Ren, qrzhuang@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178015, 61605049) and the Technology Key Projects of Fujian Province, China (Grant No. 2016H6016).
    [1]

    Yoon K H, Kang M K, Lee H, Kim S K 2018 Appl. Opt. 57 A101

    [2]

    Su Y F, Cai Z J, Liu Q, Lu Y F, Guo P L, Shi L Y, Wu J H 2018 Opt. Rev. 25 254

    [3]

    Yao S J, Wang L H, Lin C L, Zhang M 2018 J. Real-Time Image PR. 14 481

    [4]

    Fan Z C, Chen G W, Wang J C, Liao H G 2018 IEEE T. Bio-Med. Eng. 65 378

    [5]

    Su J B, Liang H W, Chen H Y, Zhou Y G, Fan H, Lin D K, Zhou J Y, Wang J H 2015 J. Disp. Technol. 30 887 (in Chinese) [苏剑邦, 梁浩文, 陈海域, 周延桂, 范杭, 林岱坤, 周建英, 王嘉辉 2015 液晶与显示 30 887]

    [6]

    Ma H Q, Wang X L, Fan H, Wang J H, Zhou J Y, Zhou Y G 2017 Las. Optoelect. Prog. 54 118 (in Chinese) [马鸿钦, 王晓露, 范杭, 王嘉辉, 周建英, 周延桂 2017 激光与光电子学进展 54 118]

    [7]

    Chen F P, Zhang X T, Liu C J, Qi Y, Zhuang Q R 2017 Acta Phot. Sin. 46 95 (in Chinese) [陈芳萍, 张晓婷, 刘楚嘉, 漆宇, 庄其仁 2017 光子学报 46 95]

    [8]

    Liang H W, An S Z, Wang J H, Zhou Y G, Fan H, Peter Krebs, Zhou J Y 2014 J. Disp. Technol. 10 695

    [9]

    Luo S R, L B D 2000 Laser Technol. 24 256 (in Chinese) [罗时荣, 吕百达 2000 激光技术 24 256]

    [10]

    Liu L H 2013 Ph. D. Dissertation (Changchun: University of Chinese Academy of Sciences) (in Chinese) [刘丽红 2013 博士学位论文 (长春: 中国科学院大学)]

    [11]

    Nie S Z, Yu J, Fan Z W, Ge W Q, Liu Y, Zhang X 2013 Acta Opt. Sin. 33 25 (in Chinese) [聂树真, 余锦, 樊仲维, 葛文琦, 刘洋, 张雪 2013 光学学报 33 25]

    [12]

    Li S, Wang Y L, Lu Z W, Ding L, Cui C, Chen Y, Yuan D P, Ba D X, Zheng Z X, Yuan H, Shi L, Bai Z X, Liu Z H, Zhu C Y, Dong Y K, Zhou L X 2016 Opt. Commun. 367 181

    [13]

    Zhao B Y, L B D 2008 Acta Phys. Sin. 57 2919 (in Chinese) [赵保银, 吕百达 2008 物理学报 57 2919]

    [14]

    Liu Z, Wang X, Zhao D 2015 Opt. Laser Technol. 69 154

    [15]

    Liu J, Yang Y F, He Y, Liu G W, Zheng X 2014 Acta Opt. Sin. 34 235 (in Chinese) [刘键, 杨艳芳, 何英, 刘国威, 郑晓 2014 光学学报 34 235]

    [16]

    Wu P, Zhuang J, Lu B D 2004 Chin. J. Lasers 31 48 (in Chinese) [吴平, 庄建, 吕百达 2004 中国激光 31 48]

    [17]

    Jiang H, Zhang X T, Guo C S 2012 Acta Phys. Sin. 61 244203 (in Chinese) [江浩, 张新廷, 国承山 2012 物理学报 61 244203]

    [18]

    Zhang M J, Gao W Y, Niu Q Y, Yuan X Q 2015 Infrar. Laser Eng. 44 2411 (in Chinese) [张明军, 高文英, 牛泉云, 袁兴起 2015 红外与激光工程 44 2411]

    [19]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. Sin-Phys. Mech. Astron. 7 705 (in Chinese) [何西, 吴逢铁, 李攀, 陈姿言 2014 中国科学: 物理学 力学 天文学 7 705]

    [20]

    Li H X, Lou Q H, Ye Z H, Dong J X, Wei Y R, Ling L 2004 High Power Laser Particle Beams 16 729 (in Chinese) [李红霞, 楼祺洪, 叶震寰, 董景星, 魏运荣, 凌磊 2004 强激光与粒子束 16 729]

    [21]

    Born M, Wolf E (translated by Yang J Q) 2009 Principles of Optics (Beijing: Electronic Industry Press) pp478-479 (in Chinese) [马科斯· 玻恩, 埃米尔· 沃耳夫 著 (杨葭荪 译) 2009 光学原理 (北京: 电子工业出版社) 第478–479页]

  • [1]

    Yoon K H, Kang M K, Lee H, Kim S K 2018 Appl. Opt. 57 A101

    [2]

    Su Y F, Cai Z J, Liu Q, Lu Y F, Guo P L, Shi L Y, Wu J H 2018 Opt. Rev. 25 254

    [3]

    Yao S J, Wang L H, Lin C L, Zhang M 2018 J. Real-Time Image PR. 14 481

    [4]

    Fan Z C, Chen G W, Wang J C, Liao H G 2018 IEEE T. Bio-Med. Eng. 65 378

    [5]

    Su J B, Liang H W, Chen H Y, Zhou Y G, Fan H, Lin D K, Zhou J Y, Wang J H 2015 J. Disp. Technol. 30 887 (in Chinese) [苏剑邦, 梁浩文, 陈海域, 周延桂, 范杭, 林岱坤, 周建英, 王嘉辉 2015 液晶与显示 30 887]

    [6]

    Ma H Q, Wang X L, Fan H, Wang J H, Zhou J Y, Zhou Y G 2017 Las. Optoelect. Prog. 54 118 (in Chinese) [马鸿钦, 王晓露, 范杭, 王嘉辉, 周建英, 周延桂 2017 激光与光电子学进展 54 118]

    [7]

    Chen F P, Zhang X T, Liu C J, Qi Y, Zhuang Q R 2017 Acta Phot. Sin. 46 95 (in Chinese) [陈芳萍, 张晓婷, 刘楚嘉, 漆宇, 庄其仁 2017 光子学报 46 95]

    [8]

    Liang H W, An S Z, Wang J H, Zhou Y G, Fan H, Peter Krebs, Zhou J Y 2014 J. Disp. Technol. 10 695

    [9]

    Luo S R, L B D 2000 Laser Technol. 24 256 (in Chinese) [罗时荣, 吕百达 2000 激光技术 24 256]

    [10]

    Liu L H 2013 Ph. D. Dissertation (Changchun: University of Chinese Academy of Sciences) (in Chinese) [刘丽红 2013 博士学位论文 (长春: 中国科学院大学)]

    [11]

    Nie S Z, Yu J, Fan Z W, Ge W Q, Liu Y, Zhang X 2013 Acta Opt. Sin. 33 25 (in Chinese) [聂树真, 余锦, 樊仲维, 葛文琦, 刘洋, 张雪 2013 光学学报 33 25]

    [12]

    Li S, Wang Y L, Lu Z W, Ding L, Cui C, Chen Y, Yuan D P, Ba D X, Zheng Z X, Yuan H, Shi L, Bai Z X, Liu Z H, Zhu C Y, Dong Y K, Zhou L X 2016 Opt. Commun. 367 181

    [13]

    Zhao B Y, L B D 2008 Acta Phys. Sin. 57 2919 (in Chinese) [赵保银, 吕百达 2008 物理学报 57 2919]

    [14]

    Liu Z, Wang X, Zhao D 2015 Opt. Laser Technol. 69 154

    [15]

    Liu J, Yang Y F, He Y, Liu G W, Zheng X 2014 Acta Opt. Sin. 34 235 (in Chinese) [刘键, 杨艳芳, 何英, 刘国威, 郑晓 2014 光学学报 34 235]

    [16]

    Wu P, Zhuang J, Lu B D 2004 Chin. J. Lasers 31 48 (in Chinese) [吴平, 庄建, 吕百达 2004 中国激光 31 48]

    [17]

    Jiang H, Zhang X T, Guo C S 2012 Acta Phys. Sin. 61 244203 (in Chinese) [江浩, 张新廷, 国承山 2012 物理学报 61 244203]

    [18]

    Zhang M J, Gao W Y, Niu Q Y, Yuan X Q 2015 Infrar. Laser Eng. 44 2411 (in Chinese) [张明军, 高文英, 牛泉云, 袁兴起 2015 红外与激光工程 44 2411]

    [19]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. Sin-Phys. Mech. Astron. 7 705 (in Chinese) [何西, 吴逢铁, 李攀, 陈姿言 2014 中国科学: 物理学 力学 天文学 7 705]

    [20]

    Li H X, Lou Q H, Ye Z H, Dong J X, Wei Y R, Ling L 2004 High Power Laser Particle Beams 16 729 (in Chinese) [李红霞, 楼祺洪, 叶震寰, 董景星, 魏运荣, 凌磊 2004 强激光与粒子束 16 729]

    [21]

    Born M, Wolf E (translated by Yang J Q) 2009 Principles of Optics (Beijing: Electronic Industry Press) pp478-479 (in Chinese) [马科斯· 玻恩, 埃米尔· 沃耳夫 著 (杨葭荪 译) 2009 光学原理 (北京: 电子工业出版社) 第478–479页]

  • [1] 蒋忠君, 何伟, 陈经纬, 罗丹洋, 杨帆, 蒋凯, 王亮. 菲涅尔衍射光刻. 物理学报, 2023, 72(1): 014202. doi: 10.7498/aps.72.20221533
    [2] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [3] 周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强. 飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射. 物理学报, 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [4] 刘会龙, 胡总华, 夏菁, 吕彦飞. 无衍射光束的产生及其应用. 物理学报, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [5] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [6] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [7] 于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠. 无衍射特殊光束的产生与三维表征. 物理学报, 2015, 64(24): 244203. doi: 10.7498/aps.64.244203
    [8] 杜团结, 王涛, 吴逢铁. 轴棱锥对无衍射光束的线聚焦特性. 物理学报, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [9] 乐阳阳, 肖寒, 王子潇, 吴敏. 关于Airy光束衍射及自加速性质的研究. 物理学报, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [10] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [11] 李建龙, 吕百达. 非傍轴矢量高斯光束单缝衍射的严格理论. 物理学报, 2008, 57(6): 3481-3485. doi: 10.7498/aps.57.3481
    [12] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性. 物理学报, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [13] 江秀娟, 周申蕾, 林尊琪, 朱 俭. 光谱色散后的相位调制光束衍射特性研究. 物理学报, 2006, 55(9): 4595-4601. doi: 10.7498/aps.55.4595
    [14] 江秀娟, 周申蕾, 林尊琪, 朱 俭. 利用消衍射透镜列阵及光谱色散平滑实现焦斑均匀辐照. 物理学报, 2006, 55(11): 5824-5828. doi: 10.7498/aps.55.5824
    [15] 陈潇潇, 李斌成, 杨亚培. 光学薄膜测量时平顶光束激励的表面热透镜理论模型. 物理学报, 2006, 55(9): 4673-4678. doi: 10.7498/aps.55.4673
    [16] 赵光普, 吕百达. 有球差多色高斯光束衍射引起的光谱开关. 物理学报, 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [17] 刘普生, 吕百达. 非傍轴矢量高斯光束的圆屏衍射. 物理学报, 2004, 53(11): 3724-3728. doi: 10.7498/aps.53.3724
    [18] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析. 物理学报, 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [19] 滕树云, 程传福, 刘 曼, 刘立人, 徐至展. 菲涅耳衍射区和夫琅和费衍射区的动态部分相干光散斑场特性. 物理学报, 2003, 52(2): 316-323. doi: 10.7498/aps.52.316
    [20] 庄松林. 透镜自动设计的衍射基价值函数. 物理学报, 1979, 28(4): 482-491. doi: 10.7498/aps.28.482
计量
  • 文章访问数:  6730
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 修回日期:  2018-03-21
  • 刊出日期:  2019-07-20

/

返回文章
返回