搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析

卫壮志 薛文瑞 彭艳玲 程鑫 李昌勇

引用本文:
Citation:

基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析

卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇

Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires

Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong
PDF
导出引用
  • 研究了一种基于涂覆石墨烯的三根电介质纳米线的THz波导,采用多极方法对这种波导所支持的5种低阶模的有效折射率的实部和传播长度进行了解析分析.结果表明,通过改变工作频率、中间纳米线半径、纳米线之间的间距以及石墨烯的费米能,可以有效地调节波导的模式特性.当工作频率从30 THz增加到40 THz时,这些模式的有效折射率的实部增大,传播长度减小,并且在变化的过程中会出现交叉现象.当中间纳米线的半径从25 nm增加到75 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部增大,传播长度变化各不相同.当纳米线之间的间距从10 nm增加到50 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部减小,传播长度增大,并且在变化的过程中会出现交叉现象.当石墨烯的费米能从0.4 eV增加到1.2 eV时,有效折射率的实部减小,传播长度增大.计算表明,多极法得到的结果与有限元方法得到的结果完全一致.本研究可以为基于涂覆石墨烯的电介质纳米线的THz波导的设计、制作和应用提供理论基础.
    In this paper, the real parts of the effective refractive indexes and the propagating lengths of five low-order modes of the terahertz waveguides based on three graphene-coated dielectric nanowires are analyzed by using the multipole method. The formation of these five lowest order modes can be attributed to the five combinations between the two lowest order modes supported when three nanowires exist alone. Therefore they are named Mode 1, Mode 2, Mode 3, Mode 4, and Mode 5 in sequence. The results show that the mode characteristics of the waveguide can be effectively tuned by changing the operating frequency, the radius of the intermediate nanowire, the gap distance between the nanowires and the Fermi energy of graphene. As the operating frequency increases from 30 THz to 40 THz, the real part of each of the effective refractive indexes increases and the propagation length decreases, and the crossover phenomenon occurs in the process of change. In addition, the real parts of the effective refractive indexes and the propagation lengths of Modes 3 and 4 are basically the same. When the radius of the middle nanowire increases from 25 nm to 75 nm, the real parts of the effective refractive indexes of Modes 1 and 2 increase, and the propagation length of Mode 1 decreases and then increases. Besides the real parts of the effective refractive indexes and the propagation lengths of Modes 3 and 4 are basically not affected by the change of radius, and the values of these two modes are basically the same. For Mode 5, the real part of the effective refractive index and propagation length slowly increase. When the spacing between the nanowires increases from 10 nm to 50 nm, Modes 3 and 4 are basically unaffected by the change of spacing, and the values of these two modes are basically the same. The real parts of the effective refractive indexes of the other modes decrease and the propagation lengths increase and eventually stabilize, and the crossover phenomenon occurs in the process of change. As the Fermi energy of graphene increases from 0.4 eV to 1.2 eV, the real part of the effective refractive index decreases and the propagation length increases. The calculation shows that the result obtained by the multipole method is exactly the same as that obtained by the finite element method. To date, no one has analyzed the terahertz waveguides based on three graphene-coated dielectric nanowires. This work can provide a theoretical basis for the design, fabrication and application of terahertz waveguide based on graphene-coated dielectric nanowires. Such waveguides have potential applications in the field of mode-division multiplexing.
      通信作者: 薛文瑞, wrxue@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61378039,61575115)和国家基础科学人才培养基金(批准号:J1103210)资助的课题.
      Corresponding author: Xue Wen-Rui, wrxue@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115) and the National Basic Science Talents Training Fund of China (Grant No. J1103210).
    [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory 50 910

    [2]

    Wang S H, Ferguson B, Zhang C L, Zhang X C 2003 Acta Phys. Sin. 52 120 (in Chinese) [王少宏,B. Ferguson,张存林,张希成 2003 物理学报 52 120]

    [3]

    Chen Q, Tani M, Jiang Z P, Zhang X C 2001 J. Opt. Soc. Am. B 18 823

    [4]

    Han H, Park H, Cho M, Kim J 2002 Appl. Phys. Lett. 80 2634

    [5]

    Redo-Sanchez A, Zhang X C 2008 IEEE J. Sel. Top. Quant. 14 260

    [6]

    Gallot G, Jamison S P, McGowan R W, Grischkowsky D 2000 J. Opt. Soc. Am. B 17 851

    [7]

    Kawase K, Mizuno M, Sohma S, Takahashi T, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065

    [8]

    Quema A, Takahashi H, Sakai M, Goto M, Ono S, Sarukura N, Shioda R, Yamada N 2003 Jpn. J. Appl. Phys. 42 L932

    [9]

    Chen L J, Chen H W, Kao T F, Lu J Y, Sun C K 2006 Opt. Lett. 31 308

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630

    [12]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880

    [13]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [14]

    He X Y, Kim S 2013 J. Opt. Soc. Am. B 30 2461

    [15]

    Wang J C, Wang X S, Shao H Y, Hu Z D, Zheng G G, Zhang F 2017 Nanoscale Res. Lett. 12 9

    [16]

    Donnelly C, Tan D T H 2014 Opt. Express 22 22820

    [17]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, Abajo F J G 2012 ACS Nano 6 431

    [18]

    Hajati M, Hajati Y 2016 Appl. Opt. 55 1878

    [19]

    Wang X S, Chen C, Pan L, Wang J C 2016 Sci. Rep. UK 6 32616

    [20]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664

    [21]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [22]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [23]

    Xing R, Jian S S 2016 IEEE Photon. Tech. L. 28 2779

    [24]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069

    [26]

    Yang H B, Qiu M, Li Q 2016 Laser Photon. Rev. 10 278

    [27]

    Wu X R, Huang C R, Xu K, Shu C, Tsang H K 2017 J. Lightwave Technol. 35 3223

    [28]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 195446

    [29]

    Wijngaard W 1973 J. Opt. Soc. Am. 63 944

    [30]

    Wijngaard W 1974 J. Opt. Soc. Am. 64 1136

    [31]

    Huang H S, Chang H C 1990 J. Lightwave Technol. 8 945

    [32]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [33]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [34]

    Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke C M, McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331

  • [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory 50 910

    [2]

    Wang S H, Ferguson B, Zhang C L, Zhang X C 2003 Acta Phys. Sin. 52 120 (in Chinese) [王少宏,B. Ferguson,张存林,张希成 2003 物理学报 52 120]

    [3]

    Chen Q, Tani M, Jiang Z P, Zhang X C 2001 J. Opt. Soc. Am. B 18 823

    [4]

    Han H, Park H, Cho M, Kim J 2002 Appl. Phys. Lett. 80 2634

    [5]

    Redo-Sanchez A, Zhang X C 2008 IEEE J. Sel. Top. Quant. 14 260

    [6]

    Gallot G, Jamison S P, McGowan R W, Grischkowsky D 2000 J. Opt. Soc. Am. B 17 851

    [7]

    Kawase K, Mizuno M, Sohma S, Takahashi T, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065

    [8]

    Quema A, Takahashi H, Sakai M, Goto M, Ono S, Sarukura N, Shioda R, Yamada N 2003 Jpn. J. Appl. Phys. 42 L932

    [9]

    Chen L J, Chen H W, Kao T F, Lu J Y, Sun C K 2006 Opt. Lett. 31 308

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630

    [12]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880

    [13]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [14]

    He X Y, Kim S 2013 J. Opt. Soc. Am. B 30 2461

    [15]

    Wang J C, Wang X S, Shao H Y, Hu Z D, Zheng G G, Zhang F 2017 Nanoscale Res. Lett. 12 9

    [16]

    Donnelly C, Tan D T H 2014 Opt. Express 22 22820

    [17]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, Abajo F J G 2012 ACS Nano 6 431

    [18]

    Hajati M, Hajati Y 2016 Appl. Opt. 55 1878

    [19]

    Wang X S, Chen C, Pan L, Wang J C 2016 Sci. Rep. UK 6 32616

    [20]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664

    [21]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [22]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [23]

    Xing R, Jian S S 2016 IEEE Photon. Tech. L. 28 2779

    [24]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069

    [26]

    Yang H B, Qiu M, Li Q 2016 Laser Photon. Rev. 10 278

    [27]

    Wu X R, Huang C R, Xu K, Shu C, Tsang H K 2017 J. Lightwave Technol. 35 3223

    [28]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 195446

    [29]

    Wijngaard W 1973 J. Opt. Soc. Am. 63 944

    [30]

    Wijngaard W 1974 J. Opt. Soc. Am. 64 1136

    [31]

    Huang H S, Chang H C 1990 J. Lightwave Technol. 8 945

    [32]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [33]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [34]

    Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke C M, McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] 李慧慧, 薛文瑞, 李宁, 杜易达, 李昌勇. 涂覆石墨烯的嵌套偏心空心圆柱的椭圆形电介质波导的模式特性. 物理学报, 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [7] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [9] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [10] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [13] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [14] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射. 物理学报, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [15] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] 岳嵩, 李智, 陈建军, 龚旗煌. 基于耦合介质纳米线的深亚波长局域波导. 物理学报, 2011, 60(9): 094214. doi: 10.7498/aps.60.094214
    [20] 盛峥, 黄思训, 曾国栋. 利用Bayesian-MCMC方法从雷达回波反演海洋波导. 物理学报, 2009, 58(6): 4335-4341. doi: 10.7498/aps.58.4335
计量
  • 文章访问数:  6426
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-05
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-05-20

/

返回文章
返回