搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭球与圆球混合胶体体系的玻璃化转变

孙艳丽 王华光 张泽新

引用本文:
Citation:

椭球与圆球混合胶体体系的玻璃化转变

孙艳丽, 王华光, 张泽新

Glass transition in binary mixture of colloidal ellipsoids and spheres

Sun Yan-Li, Wang Hua-Guang, Zhang Ze-Xin
PDF
导出引用
  • 以椭球与圆球混合的胶体体系为研究对象,通过增加体系的面积分数,从实验上研究了混合体系发生玻璃化转变过程中结构和动力学行为的演变规律.在结构方面,通过计算和分析径向分布函数、泰森多边形以及取向序参量,发现椭球可以有效地抑制圆球结晶,整个体系在结构上始终保持无序.在动力学方面,通过计算体系的均方位移和自散射函数,发现随着面积分数的增加,体系的动力学明显变慢,弛豫时间在接近模耦合理论预测的玻璃化转变点快速增大并发散.通过考察快速粒子参与的协同重排行为,发现协同重排区域形状、大小和位置都与椭球的存在密切关联.
    The nature of glass and glass transition are considered to be one of the most fundamental research problems in condensed matter physics. Colloidal suspension provides a novel model system for studying glass and glass transition, since the structures and dynamics of a colloidal system can be quantitatively probed by video microscopy. Traditional systems for studying glass transition typically are single-component systems composed of either isotropic or anisotropic colloidal particles. Recently, glass transition of mixture of isotropic and anisotropic colloids has attracted great attention, such as the observation of rotational glass and translational glass, and the establishment of the two-step glass transition. Similarly, computer simulations have also shown that mixture of isotropic and anisotropic colloidal particles could manifest interesting, new glassy behaviors. However, the experimental study of the glass transition in such a colloidal mixture is still rare. In this paper, we experimentally investigate the glass transition of a binary mixture of colloidal ellipsoids and spheres. The colloidal spheres are polystyrene microspheres with a diameter of 1.6 m, and the ellipsoids are prepared by physically stretching from polystyrene microspheres of 2.5 m in diameter. The major and minor axes of the as-prepared ellipsoid are 2.0 m and 1.2 m, respectively. The mixture is confined between two glass slides to make a quasi-two-dimensional sample. To prevent the mixture from crystallizing, the mixing ratio of ellipsoids and spheres is chosen to be 1/4 in number, which is similar to the mixing ratio used in the classical Kob-Anderson model of binary sphere mixture. We systemically increase the area fraction of colloidal mixture to drive the glass transition. We then employ bright-field video microscopy to record the motion of the particles in the colloidal suspension at a single particle level, and the trajectories of individual particles are obtained by standard particle tracking algorithm. Through the analysis of radial distribution function, Voronoi diagram and local order parameter, we find that the ellipsoids can effectively inhibit the spheres from crystalizing, and the structure of the system remains disordered when increasing the area fraction. For dynamics, mean square displacement and self-intermediate scattering function are calculated. We find that the dynamic process of the system slows down substantially when increasing the area fraction, and the relaxation time of the system increases rapidly and diverges close to the glass transition point predicted by the mode coupling theory. Moreover, we analyze the fast particles that participate in cooperative rearrangement regions (CRRs) in the system, and find that the shapes, sizes and positions of CRRs are closely related to the locations of the ellipsoids in the system.
      通信作者: 张泽新, zhangzx@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574222,21522404)和江苏省高等学校自然科学研究项目(批准号:17KJB140020)资助的课题.
      Corresponding author: Zhang Ze-Xin, zhangzx@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574222, 21522404) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB140020).
    [1]

    Angell C A 1995 Science 267 1924

    [2]

    Slade L, Levine H, Ievolella J, Wang M 1993 J. Sci. Food Agric. 63 133

    [3]

    Zahn K, Lenke R, Maret G 1999 Phys. Rev. Lett. 82 2721

    [4]

    Debenedetti P G, Truskett T M, Lewis C P, Stillinger F H 2001 Adv. Chem. Eng. 28 21

    [5]

    Wen P 2017 Acta Phys. Sin. 66 176407 (in Chinese)[闻平 2017 物理学报 66 176407]

    [6]

    Fox T G, Flory P J 1950 J. Appl. Phys. 21 581

    [7]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [8]

    van Megen W, Underwood S M 1993 Phys. Rev. Lett. 70 2766

    [9]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [10]

    Gotze W, Sjogren L 1992 Rep. Prog. Phys. 55 241

    [11]

    Weeks E R, Crocker J C, Levitt A C, Schofield A, Weitz D A 2000 Science 287 627

    [12]

    Kegel W K, Van B A 2000 Science 287 290

    [13]

    Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [14]

    Yunker P, Zhang Z, Yodh A G 2010 Phys. Rev. Lett. 104 015701

    [15]

    Chong S H, Moreno A J, Sciortino F, Kob W 2005 Phys. Rev. Lett. 94 215701

    [16]

    Yatsenko G, Schweizer K S 2007 J. Chem. Phys. 126 014505

    [17]

    Tripathy M, Schweizer K S 2009 J. Chem. Phys. 130 244906

    [18]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [19]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2010 Phys. Rev. Lett. 105 055702

    [20]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [21]

    Kang K, Dhont J K G 2013 Phys. Rev. Lett. 110 015901

    [22]

    Zheng Z, Wang F, Han Y 2011 Phys. Rev. Lett. 107 065702

    [23]

    Letz M, Schilling R, Latz A 2000 Phys. Rev. E 62 5173

    [24]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [25]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [26]

    Xu W S, Duan X, Sun Z Y, An L J 2015 J. Chem. Phys. 142 224506

    [27]

    Takae K, Onuki A 2013 Phys. Rev. E 88 042317

    [28]

    Toxvaerd S, Schrøder T B, Dyre J C 2009 J. Chem. Phys. 130 224501

    [29]

    Champion J A, Katare Y K, Mitragotri S 2007 PNAS 104 11901

    [30]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese)[刘海霞, 陈科, 厚美瑛 2015 物理学报 64 116302]

    [31]

    Chen K 2017 Acta Phys. Sin. 66 178201 (in Chinese)[陈科 2017 物理学报 66 178201]

    [32]

    Gasser U 2009 J. Phys.:Condens. Matter 21 203101

    [33]

    Kawasaki T, Araki T, Tanaka H 2007 Phys. Rev. Lett. 99 215701

    [34]

    Zhang Z, Yunker P J, Habdas P, Yodh A G 2011 Phys. Rev. Lett. 107 208303

  • [1]

    Angell C A 1995 Science 267 1924

    [2]

    Slade L, Levine H, Ievolella J, Wang M 1993 J. Sci. Food Agric. 63 133

    [3]

    Zahn K, Lenke R, Maret G 1999 Phys. Rev. Lett. 82 2721

    [4]

    Debenedetti P G, Truskett T M, Lewis C P, Stillinger F H 2001 Adv. Chem. Eng. 28 21

    [5]

    Wen P 2017 Acta Phys. Sin. 66 176407 (in Chinese)[闻平 2017 物理学报 66 176407]

    [6]

    Fox T G, Flory P J 1950 J. Appl. Phys. 21 581

    [7]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [8]

    van Megen W, Underwood S M 1993 Phys. Rev. Lett. 70 2766

    [9]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [10]

    Gotze W, Sjogren L 1992 Rep. Prog. Phys. 55 241

    [11]

    Weeks E R, Crocker J C, Levitt A C, Schofield A, Weitz D A 2000 Science 287 627

    [12]

    Kegel W K, Van B A 2000 Science 287 290

    [13]

    Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [14]

    Yunker P, Zhang Z, Yodh A G 2010 Phys. Rev. Lett. 104 015701

    [15]

    Chong S H, Moreno A J, Sciortino F, Kob W 2005 Phys. Rev. Lett. 94 215701

    [16]

    Yatsenko G, Schweizer K S 2007 J. Chem. Phys. 126 014505

    [17]

    Tripathy M, Schweizer K S 2009 J. Chem. Phys. 130 244906

    [18]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [19]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2010 Phys. Rev. Lett. 105 055702

    [20]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [21]

    Kang K, Dhont J K G 2013 Phys. Rev. Lett. 110 015901

    [22]

    Zheng Z, Wang F, Han Y 2011 Phys. Rev. Lett. 107 065702

    [23]

    Letz M, Schilling R, Latz A 2000 Phys. Rev. E 62 5173

    [24]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [25]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [26]

    Xu W S, Duan X, Sun Z Y, An L J 2015 J. Chem. Phys. 142 224506

    [27]

    Takae K, Onuki A 2013 Phys. Rev. E 88 042317

    [28]

    Toxvaerd S, Schrøder T B, Dyre J C 2009 J. Chem. Phys. 130 224501

    [29]

    Champion J A, Katare Y K, Mitragotri S 2007 PNAS 104 11901

    [30]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese)[刘海霞, 陈科, 厚美瑛 2015 物理学报 64 116302]

    [31]

    Chen K 2017 Acta Phys. Sin. 66 178201 (in Chinese)[陈科 2017 物理学报 66 178201]

    [32]

    Gasser U 2009 J. Phys.:Condens. Matter 21 203101

    [33]

    Kawasaki T, Araki T, Tanaka H 2007 Phys. Rev. Lett. 99 215701

    [34]

    Zhang Z, Yunker P J, Habdas P, Yodh A G 2011 Phys. Rev. Lett. 107 208303

  • [1] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究. 物理学报, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] 梁建, 王华光, 张泽新. 粗糙和光滑椭球胶体的受限扩散. 物理学报, 2024, 73(14): 148202. doi: 10.7498/aps.73.20240559
    [3] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [4] 高艺雯, 王影, 田文得, 陈康. 空间调制的驱动外场下活性聚合物的动力学行为. 物理学报, 2022, 71(24): 240501. doi: 10.7498/aps.71.20221367
    [5] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥. S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响. 物理学报, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [6] 刘心卓, 王华光. 椭球胶体在圆球胶体体系中扩散行为的实验研究. 物理学报, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [7] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [8] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [9] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究. 物理学报, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [10] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [11] 刘海霞, 陈科, 厚美瑛. 二维胶体玻璃中玻色峰与结构无序度的关联. 物理学报, 2015, 64(11): 116302. doi: 10.7498/aps.64.116302
    [12] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [13] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究. 物理学报, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [14] 坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜. Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟. 物理学报, 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [15] 秦卫阳, 孙涛, 焦旭东, 杨永锋. 一类动力学系统通过函数耦合实现混沌同步. 物理学报, 2012, 61(9): 090502. doi: 10.7498/aps.61.090502
    [16] 陈军, 李春光. 禁忌学习神经元模型的电路设计及其动力学研究. 物理学报, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [17] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [18] 李剑锋, 张红东, 邱 枫, 杨玉良. 模拟囊泡形变动力学的新方法离散空间变分法. 物理学报, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [19] 付文玉, 侯锡苗, 贺丽霞, 郑志刚. 少体硬球系统的动力学与统计研究. 物理学报, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [20] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
计量
  • 文章访问数:  7220
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-02
  • 修回日期:  2018-03-16
  • 刊出日期:  2019-05-20

/

返回文章
返回