搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后退火处理对铟锡氧化物表面等离激元共振特性的影响

蒋行 周玉荣 刘丰珍 周玉琴

引用本文:
Citation:

后退火处理对铟锡氧化物表面等离激元共振特性的影响

蒋行, 周玉荣, 刘丰珍, 周玉琴

Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide

Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin
PDF
导出引用
  • 近年来,表面等离激元光子学发展迅速,并取得了众多新成果.重掺杂半导体材料的表面等离激元共振性质的研究,也得到了人们越来越多的关注.本文通过纳米球刻印技术制备准三维二氧化硅纳米球阵列,在阵列上沉积铟锡氧化物薄膜,通过不同条件下的后退火处理改变铟锡氧化物薄膜的载流子浓度和载流子迁移率,并研究随着材料性质的改变其相应表面等离激元共振特性的变化规律.结果表明:退火处理均使铟锡氧化物薄膜的晶粒长大,光学透过率增加;在空气中退火会导致铟锡氧化物薄膜的载流子浓度减少,其表面等离激元共振峰红移;而真空退火则使铟锡氧化物薄膜的载流子浓度增加,共振峰蓝移.这些研究结果可为后续铟锡氧化物表面等离激元材料及器件的研究提供科学依据和实际指导.
    With the development of modern micro-processing technology, the basic theory and relevant applications for surface plasmon have formed a new research direction which is known as surface plasmon photonics. The traditional plasmonic materials are noble metals, such as gold and silver, but they have some limitations that may hinder their application in plasmonic devices, such as lack of the chemical stability in air, difficulty in modulating by external field, large optical losses in the infrared wavelength range, etc. It has been demonstrated that transparent conducting oxides are a good candidate of plasmonic materials working in the infrared frequency range because of their low optical loss and tenability. Here in this work, the quasi-three dimensional silica nano-sphere array is prepared by nano-imprint lithography. Indium tin oxide (ITO) film is deposited on the array. The transmission properties are measured and the excitation modes of surface plasmons are analyzed for the samples obtained. Then, we focus on the effect of annealing treatment on characteristics of surface plasmon resonance for ITO thin films. The carrier concentration and carrier mobility of the ITO thin films annealed under different conditions are changed, and the corresponding surface plasmon resonance characteristics are investigated. The main results obtained in this work are as follows. 1) Mono-disperse SiO2 spheres, quasi-ordered monolayer SiO2 mask and ITO films with high transmittance ( 85%) and high electrical conductivity are obtained. Experimental results show that a surface plasma resonance at a wavelength of 1780 nm is excited for the glass/sphere/ITO system. 2) The grain size of ITO thin film after being annealed turns large, resulting in the increased optical transmittance of samples. 3) The carrier concentration of ITO film annealed in the air decreases, leading the resonance peak of surface plasmon to be red-shifted. 4) The carrier concentration of ITO thin film annealed in vacuum increases and the resonance peak is blue-shifted. These results obtained in this work contribute to the application of surface plasmon devices fabricated by ITO materials.
      通信作者: 周玉琴, yqzhou@ucas.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61604153,61674150)资助的课题.
      Corresponding author: Zhou Yu-Qin, yqzhou@ucas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604153, 61674150).
    [1]

    Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102

    [2]

    Naik G V, Kim J, Boltasseva A 2011 Opt. Mater. Express 1 1090

    [3]

    Noginov M A,Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A, Podolskiy V A 2011 Appl. Phys. Lett. 99 021101

    [4]

    Rhodes C, Franzen S, Maria J P, Losego M 2006 J. Appl. Phys. 100 054905

    [5]

    Rhodes C, Cerruti M, Efremenko A, Losego M, Aspnes D E, Maria J P, Franzen S 2008 J. Appl. Phys. 103 093108

    [6]

    Franzen S, Rhodes C, Cerruti M, Gerber R W, Losego M, Maria J, Aspnes D E 2009 Opt. Lett. 34 2867

    [7]

    Losego M D, Efremenko A Y, Rhodes C L, Cerruti M G, Franzen S, Maria J 2009 J. Appl. Phys. 106 024903

    [8]

    Kanehara M, Koike H, Yoshinaga T, Teranishi T 2009 J. Am. Chem. Soc. 131 17736

    [9]

    Garcia G, Buonsanti R, Runnerstrom E L, Mendelsberg R J, Llordes A, Anders A, Richardson T J, Milliron D J 2011 Nano Lett. 11 4415

    [10]

    Lounis S D, Runnerstrom E L, Bergerud A, Nordlund D, Milliron D J 2014 J. Am. Chem. Soc. 136 7110

    [11]

    Matsui H, Furuta S, Tabata H 2014 Appl. Phys. Lett. 104 211903

    [12]

    Li S Q, Guo P, Zhang L, Zhou W, Odom T W, Seideman T, Ketterson J B, Chang R P H 2011 ACS Nano 5 9161

    [13]

    Zhan P, Wang Z L, Dong H, Sun J, Wu J, Wang H, Zhu S, Ming N, Zi J 2006 Adv. Mater. 18 1612

    [14]

    Jiang H, Zhou Y, Zhou Y 2016 Opt. Lett. 41 1857

    [15]

    Degiron A, Ebbesen T W 2005 J. Opt. A:Pure and Appl. Opt. 7 S90

    [16]

    Matsui T, Agrawal A, Nahata A, Vardeny Z V 2007 Nature 446 517

    [17]

    Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401

    [18]

    Landstrm L, Brodoceanu D, Piglmayer K, Langer G, Buerle D 2005 Appl. Phys. A 81 15

    [19]

    Liu X, Park J, Kang J H, Yuan H, Cui Y, Hwang H Y, Brongersma M L 2014 Appl. Phys. Lett. 202 181117

    [20]

    Song S, Yang T, Liu J, Xin Y, Li Y, Han S 2011 Appl. Surf. Sci. 257 7061

    [21]

    Han H, Adams D, Mayer J W, Alford T L 2005 J. Appl. Phys. 98 083705

    [22]

    Guilln C, Herrero J S 2007 J. Appl. Phys. 101 073514

  • [1]

    Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102

    [2]

    Naik G V, Kim J, Boltasseva A 2011 Opt. Mater. Express 1 1090

    [3]

    Noginov M A,Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A, Podolskiy V A 2011 Appl. Phys. Lett. 99 021101

    [4]

    Rhodes C, Franzen S, Maria J P, Losego M 2006 J. Appl. Phys. 100 054905

    [5]

    Rhodes C, Cerruti M, Efremenko A, Losego M, Aspnes D E, Maria J P, Franzen S 2008 J. Appl. Phys. 103 093108

    [6]

    Franzen S, Rhodes C, Cerruti M, Gerber R W, Losego M, Maria J, Aspnes D E 2009 Opt. Lett. 34 2867

    [7]

    Losego M D, Efremenko A Y, Rhodes C L, Cerruti M G, Franzen S, Maria J 2009 J. Appl. Phys. 106 024903

    [8]

    Kanehara M, Koike H, Yoshinaga T, Teranishi T 2009 J. Am. Chem. Soc. 131 17736

    [9]

    Garcia G, Buonsanti R, Runnerstrom E L, Mendelsberg R J, Llordes A, Anders A, Richardson T J, Milliron D J 2011 Nano Lett. 11 4415

    [10]

    Lounis S D, Runnerstrom E L, Bergerud A, Nordlund D, Milliron D J 2014 J. Am. Chem. Soc. 136 7110

    [11]

    Matsui H, Furuta S, Tabata H 2014 Appl. Phys. Lett. 104 211903

    [12]

    Li S Q, Guo P, Zhang L, Zhou W, Odom T W, Seideman T, Ketterson J B, Chang R P H 2011 ACS Nano 5 9161

    [13]

    Zhan P, Wang Z L, Dong H, Sun J, Wu J, Wang H, Zhu S, Ming N, Zi J 2006 Adv. Mater. 18 1612

    [14]

    Jiang H, Zhou Y, Zhou Y 2016 Opt. Lett. 41 1857

    [15]

    Degiron A, Ebbesen T W 2005 J. Opt. A:Pure and Appl. Opt. 7 S90

    [16]

    Matsui T, Agrawal A, Nahata A, Vardeny Z V 2007 Nature 446 517

    [17]

    Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401

    [18]

    Landstrm L, Brodoceanu D, Piglmayer K, Langer G, Buerle D 2005 Appl. Phys. A 81 15

    [19]

    Liu X, Park J, Kang J H, Yuan H, Cui Y, Hwang H Y, Brongersma M L 2014 Appl. Phys. Lett. 202 181117

    [20]

    Song S, Yang T, Liu J, Xin Y, Li Y, Han S 2011 Appl. Surf. Sci. 257 7061

    [21]

    Han H, Adams D, Mayer J W, Alford T L 2005 J. Appl. Phys. 98 083705

    [22]

    Guilln C, Herrero J S 2007 J. Appl. Phys. 101 073514

  • [1] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计. 物理学报, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 赵世平, 张鑫, 刘智慧, 王全, 王华林, 姜薇薇, 刘超前, 王楠, 刘世民, 崔云先, 马艳平, 丁万昱, 巨东英. 低能氨离子/基团扩散对铟锡氧化物薄膜电学性质的影响规律. 物理学报, 2020, 69(23): 236801. doi: 10.7498/aps.69.20200860
    [6] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [10] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究. 物理学报, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [11] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真. 物理学报, 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [12] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [13] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [14] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [15] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [16] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [17] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [18] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [19] 张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [20] 刘黎明, 熊玉卿, 郭 云, 李冠斌, 杨得全. 软X射线辐照引起的铟锡氧化物表面光化学反应. 物理学报, 2000, 49(9): 1883-1885. doi: 10.7498/aps.49.1883
计量
  • 文章访问数:  6963
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-13
  • 修回日期:  2018-06-02
  • 刊出日期:  2018-09-05

/

返回文章
返回