搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维铁电材料研究进展

胡婷 阚二军

引用本文:
Citation:

低维铁电材料研究进展

胡婷, 阚二军

Research progress of low-dimensional ferroelectric materials

Hu Ting, Kan Er-Jun
PDF
导出引用
  • 铁电材料是一类重要的功能材料,铁电元件的小型化、集成化是当今铁电材料发展的一大趋势.但是尺寸效应、表面效应等的存在制约了传统块体铁电材料在纳米尺度下的应用,因而低维度纳米材料中的铁电性能研究成为当前材料科学领域的研究热点之一.本文综述了近年来理论和实验上关于低维铁电材料的探索,包括二维范德瓦耳斯层状铁电材料、共价功能化低维铁电材料、低维钙钛矿材料、外界调控以及二维铁电金属等材料的理论预言与实验铁电性的观测;也提出一些物理新机制来解释低维下的铁电性;最后对该领域今后的发展进行了展望.
    Ferroelectricity, which exhibits a spontaneous electrical polarization under Curie temperature, is of potential value for sensors, photonics and energy-efficient memories, solar cell, and photoelectrochemical applications. With the rapid development of high-density electronic devices, miniaturized and integrated ferroelectric devices have been a development tendency for ferroelectric materials. However, the size effect and surface effect restrict the applications of traditional bulk ferroelectric materials on a nanometer scale. Therefore the ferroelectric properties of low-dimensional nanomaterials have become an extensively studying subject in the field of material science. In this article, we review the theoretical and experimental researches of low-dimensional ferroelectric materials in recent years, including two-dimensional van der Waals layered ferroelectric materials, covalent functionalized ferroelectric materials, low-dimensional perovskite materials, external regulation and two-dimensional hyperferroelectric metal. We first give a concise outline of the basic theory, which relates to the existence of ferroelectricity. And then, we introduce the intrinsic ferroelectricity into two-dimensional materials. Many samples have been predicted, and the origin of ferroelectricity can be attributed to the soft modes of phonon, which leads to the ion displacements. Further, we discuss the ferroelectricity in covalent-modified two-dimensional materials. In such structures, the modified groups produce spontaneous electric dipoles, and lead to the macroscopical ferroelectricity. Therefore, we focus on how to design such structures, and the consequent ferreoelectricity. Considering the big potential of perovskite structures in ferroelectric family, we also discuss the recently reported low-dimensional perovskite structures, indicating several competitive mechanisms in such complex compounds. Additionally, we also introduce the research progress of other aspects in this field, including charge-polar induced ferroelectricity, two-dimensional ferromagnetic ferroelectrics, and hyperferroelectric metal. The reported new physical mechanisms are also provided to explain the low-dimensional ferroelectrics. Thus, such results not only mark the research of low-dimensional materials entering into a new stage, but also provide abundant physics in this area. Finally, the development prospects for low-dimensional ferroelectrics are also discussed.
      通信作者: 阚二军, ekan@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11604146,51522206,11574151,11774173)、江苏省自然科学基金(批准号:BK20130031)和教育部新世纪优秀人才计划(批准号:NCET-12-0628)资助的课题.
      Corresponding author: Kan Er-Jun, ekan@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604146, 51522206, 11574151, 11774173), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130031), and the New Century Excellent Talents in University, China (Grant No. NCET-12-0628).
    [1]

    Lu H, Bark C W, de los Esque Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59

    [2]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [3]

    Scott J F 2007 Science 315 954

    [4]

    Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617

    [5]

    Efremov D V, van den Brink J, Khomskii D I 2004 Nat. Mater. 3 853

    [6]

    Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166

    [7]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kit H 2005 Nature 436 1136

    [8]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083

    [9]

    Junquera J, Ghosez P 2003 Nature 422 506

    [10]

    Spaldin N A 2004 Science 304 1606

    [11]

    Fong D, Stephenson G, Streiffer S, Eastman J, Auciello O, Fuoss P, Thompson C 2004 Science 304 1650

    [12]

    Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [13]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197

    [14]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [15]

    Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213

    [16]

    Liu H, Neal A T, Zhu Z, Tomanek D, Ye P D 2014 ACS Nano 8 4033

    [17]

    Topsakal M, Akturk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [18]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [19]

    Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854

    [20]

    Kou L, Chen C, Smith S C 2015 J. Phys. Chem. Lett. 6 2794

    [21]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393

    [22]

    Ginzburg V L 1949 Zh. Eksp. Teor. Fiz. 19 36

    [23]

    Devonshire A F 1954 Adv. Phys. 3 85

    [24]

    Cochran W 1960 Adv. Phys. 9 387

    [25]

    Anderson P W 1960 Fizika Dielektrikov (Moscow: Akad. Nauk. SSSR)

    [26]

    De Gennes P G 1963 Solid State Commun. 1 132

    [27]

    Brout R, Mller K A, Thomas H 1966 Adv. Phys. 4 507

    [28]

    Zhou J H, Yang C Z 1997 Solid State Commun. 101 639

    [29]

    Onsager L 1944 Phys. Rev. 65 117

    [30]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601

    [31]

    Sante D D, Stroppa A, Barone P, Whangbo M H, Picozzi S 2015 Phys. Rev. B 91 161401

    [32]

    Guan S, Liu C, Lu Y, Yao Y, Yang S A 2017 arXiv:171204265v2 [cond-mat.mtrl-sci]

    [33]

    von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771

    [34]

    Xiao C, Wang F, Yang S A, Lu Y 2017 arXiv:1706.05629 [cond-mat.mtrl-sci]

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274

    [36]

    Kooi B J, Noheda B 2016 Science 353 221

    [37]

    Wan W, Liu C, Xiao W, Yao Y 2017 Appl. Phys. Lett. 111 132904

    [38]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956

    [39]

    Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508

    [40]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236

    [41]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601

    [42]

    Wang H, Qian X 2017 2D Mater. 4 015042

    [43]

    Li L, Wu M 2017 ACS Nano 11 6382

    [44]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2012 J. Am. Chem. Soc. 134 14423

    [45]

    Tu Z, Wu M, Zeng X C 2017 J. Phys. Chem. Lett. 8 1973

    [46]

    Maisonneuve V, Cajipe V B, Simon A, von der Muhll R, Ravez J 1997 Phys. Rev. B 56 10860

    [47]

    Studenyak I P, Mitrovcij V V, Kovacs G S, Gurzan M I, Mykajlo O A, Vysochanskii Y M, Cajipe V B 2003 Phys. Status Solidi B 236 678

    [48]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808

    [49]

    Chyasnavichyus M, Susner M A, Ievlev A V, Eliseev E A, Kalinin S V, Balke N, Morozovska A N, McGuire M A 2016 Appl. Phys. Lett. 109 172901

    [50]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357

    [51]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427

    [52]

    Song W, Fei R, Yang L 2017 Phys. Rev. B 96 235420

    [53]

    Kan E, Wu F, Deng K, Tang W 2013 Appl. Phys. Lett. 103 193103

    [54]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena1 P 2013 Phys. Rev. B 87 081406

    [55]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309

    [56]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506

    [57]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290

    [58]

    Lu J, Luo W, Feng J, Xiang H 2018 Nano Lett. 18 595

    [59]

    Zhang X, Yang Z, Chen Y 2017 J. Appl. Phys. 122 064101

    [60]

    Hu T, Wu H, Zeng H, Deng K, Kan E 2016 Nano Lett. 16 8015

    [61]

    Huang C, Du Y, Wu H, Xiang H, Deng K, Kan E 2018 Phys. Rev. Lett. 120 147601

    [62]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [63]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024

    [64]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415

  • [1]

    Lu H, Bark C W, de los Esque Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59

    [2]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [3]

    Scott J F 2007 Science 315 954

    [4]

    Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617

    [5]

    Efremov D V, van den Brink J, Khomskii D I 2004 Nat. Mater. 3 853

    [6]

    Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166

    [7]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kit H 2005 Nature 436 1136

    [8]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083

    [9]

    Junquera J, Ghosez P 2003 Nature 422 506

    [10]

    Spaldin N A 2004 Science 304 1606

    [11]

    Fong D, Stephenson G, Streiffer S, Eastman J, Auciello O, Fuoss P, Thompson C 2004 Science 304 1650

    [12]

    Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [13]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197

    [14]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [15]

    Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213

    [16]

    Liu H, Neal A T, Zhu Z, Tomanek D, Ye P D 2014 ACS Nano 8 4033

    [17]

    Topsakal M, Akturk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [18]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [19]

    Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854

    [20]

    Kou L, Chen C, Smith S C 2015 J. Phys. Chem. Lett. 6 2794

    [21]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393

    [22]

    Ginzburg V L 1949 Zh. Eksp. Teor. Fiz. 19 36

    [23]

    Devonshire A F 1954 Adv. Phys. 3 85

    [24]

    Cochran W 1960 Adv. Phys. 9 387

    [25]

    Anderson P W 1960 Fizika Dielektrikov (Moscow: Akad. Nauk. SSSR)

    [26]

    De Gennes P G 1963 Solid State Commun. 1 132

    [27]

    Brout R, Mller K A, Thomas H 1966 Adv. Phys. 4 507

    [28]

    Zhou J H, Yang C Z 1997 Solid State Commun. 101 639

    [29]

    Onsager L 1944 Phys. Rev. 65 117

    [30]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601

    [31]

    Sante D D, Stroppa A, Barone P, Whangbo M H, Picozzi S 2015 Phys. Rev. B 91 161401

    [32]

    Guan S, Liu C, Lu Y, Yao Y, Yang S A 2017 arXiv:171204265v2 [cond-mat.mtrl-sci]

    [33]

    von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771

    [34]

    Xiao C, Wang F, Yang S A, Lu Y 2017 arXiv:1706.05629 [cond-mat.mtrl-sci]

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274

    [36]

    Kooi B J, Noheda B 2016 Science 353 221

    [37]

    Wan W, Liu C, Xiao W, Yao Y 2017 Appl. Phys. Lett. 111 132904

    [38]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956

    [39]

    Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508

    [40]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236

    [41]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601

    [42]

    Wang H, Qian X 2017 2D Mater. 4 015042

    [43]

    Li L, Wu M 2017 ACS Nano 11 6382

    [44]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2012 J. Am. Chem. Soc. 134 14423

    [45]

    Tu Z, Wu M, Zeng X C 2017 J. Phys. Chem. Lett. 8 1973

    [46]

    Maisonneuve V, Cajipe V B, Simon A, von der Muhll R, Ravez J 1997 Phys. Rev. B 56 10860

    [47]

    Studenyak I P, Mitrovcij V V, Kovacs G S, Gurzan M I, Mykajlo O A, Vysochanskii Y M, Cajipe V B 2003 Phys. Status Solidi B 236 678

    [48]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808

    [49]

    Chyasnavichyus M, Susner M A, Ievlev A V, Eliseev E A, Kalinin S V, Balke N, Morozovska A N, McGuire M A 2016 Appl. Phys. Lett. 109 172901

    [50]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357

    [51]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427

    [52]

    Song W, Fei R, Yang L 2017 Phys. Rev. B 96 235420

    [53]

    Kan E, Wu F, Deng K, Tang W 2013 Appl. Phys. Lett. 103 193103

    [54]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena1 P 2013 Phys. Rev. B 87 081406

    [55]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309

    [56]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506

    [57]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290

    [58]

    Lu J, Luo W, Feng J, Xiang H 2018 Nano Lett. 18 595

    [59]

    Zhang X, Yang Z, Chen Y 2017 J. Appl. Phys. 122 064101

    [60]

    Hu T, Wu H, Zeng H, Deng K, Kan E 2016 Nano Lett. 16 8015

    [61]

    Huang C, Du Y, Wu H, Xiang H, Deng K, Kan E 2018 Phys. Rev. Lett. 120 147601

    [62]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [63]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024

    [64]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415

  • [1] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [2] 黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠. In2Se3薄膜的掺杂效应及其纳米带铁电性. 物理学报, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [3] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [4] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [5] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [6] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [7] 胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇. 应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导. 物理学报, 2019, 68(2): 026701. doi: 10.7498/aps.68.20181513
    [8] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩. 柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性. 物理学报, 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [9] 石玉君, 张旭, 秦雷, 金魁, 袁洁, 朱北沂, 竺云. Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性. 物理学报, 2016, 65(5): 058101. doi: 10.7498/aps.65.058101
    [10] 张润兰, 邢辉, 陈长乐, 段萌萌, 罗炳成, 金克新. YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究. 物理学报, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [11] 何建平, 吕文中, 汪小红. Ba0.5Sr0.5TiO3有序构型的第一性原理研究. 物理学报, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [12] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [13] 赵庆勋, 马继奎, 耿波, 魏大勇, 关丽, 刘保亭. 氮氢混合气氛退火中氢对Bi4Ti3O12铁电性能的影响. 物理学报, 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [14] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [15] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [16] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究. 物理学报, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [17] 薛卫东, 陈召勇, 杨 春, 李言荣. 四方相BaTiO3铁电性的第一性原理研究. 物理学报, 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [18] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性. 物理学报, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [19] 张 磊, 钟维烈. 横场-伊辛模型中BaTiO3的铁电行为. 物理学报, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
    [20] 张 磊, 钟维烈, 彭毅萍, 王玉国. 钛酸锶钡的铁电相变与晶胞体积的关联. 物理学报, 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
计量
  • 文章访问数:  12755
  • PDF下载量:  1409
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-04-30
  • 刊出日期:  2018-08-05

/

返回文章
返回