搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种可用于极化3He实验的新型磁场系统

王文钊 胡碧涛 郑皓 屠小青 高朋林 闫松 郭文传 闫海洋

引用本文:
Citation:

一种可用于极化3He实验的新型磁场系统

王文钊, 胡碧涛, 郑皓, 屠小青, 高朋林, 闫松, 郭文传, 闫海洋

A new magnetic field system for 3He polarization

Wang Wen-Zhao, Hu Bi-Tao, Zheng Hao, Tu Xiao-Qing, Gao Peng-Lin, Yan Song, Guo Wen-Chuan, Yan Hai-Yang
PDF
导出引用
  • 原子核自旋极化的3He气体已被深入研究并广泛用于各种科学实验.在过去的极化3He 实验中,为了减小磁场梯度对纵向弛豫时间的影响,通常会建造大尺寸的亥姆霍兹线圈来提供所需均匀度的主磁场环境.本文通过计算得到了新的六正方形线圈系统,可以为极化3He实验提供小型高均匀性的磁场装置.其中线圈系统内部超过 30%的区域磁场梯度满足√|▽Bx|2+|▽By|2/B0 -4 cm-1,这一均匀区域比例超过了现在所有用于极化3He 实验的线圈装置.对于其他需要大均匀区域磁场环境的研究实验,新的六线圈系统也具有很好的应用价值.
    The nuclear spin-polarized 3He gas has been in depth studied and widely used in various scientific experiments. The polarized 3He gas can be used as a polarized neutron target to study the reaction of neutrons with charged particles or photon beams. On the other hand, spin polarized 3He gas is a good probe for detecting the new interactions in the supernormal model, and has many other applications as follows:the spin-dependent interaction can be studied quantitatively by measuring the NMR frequency shift but the spin-dependent interaction can also be studied by measuring the relaxation time of polarized 3He gas; the polarized 3He gas can be applied to magnetometers and magnetic resonance imaging (MRI); the highly polarized 3He gas can be used as a neutron spin filter for neutron polarization and polarization analysis because of the high correlation between the absorption cross section of the neutron in polarized 3He nucleus and the spin orientation. At present, the three major domestic sources of neutron, CMRR, CARR, and CSNS, are used to study the neutron polarization and polarization analysis techniques based on spin polarized 3He gas. The longitudinal (or spin-lattice) relaxation time (i.e., T1) of 3He is a key parameter that limits the polarizability of 3He gas. In order to reduce the effect of magnetic field gradient on the longitudinal relaxation time of polarized 3He gas, large-sized Helmholtz coils are usually constructed to provide the main magnetic field where the uniformity in the magnetic field central region reaches 10-4 cm-1. To obtain enough magnetic field uniformity, some magnetic field systems even exceed 1.5 m in size. However, it is expected to have a small magnetic field configuration from the view of practicality and convenience. For the common size (3He cells, Merritt coil and Saddle coil can effectively reduce the size of the magnetic field apparatus. However, for electron scattering experiments of 3He cells, the chamber length can be 40 cm. The system length exceeds 1 m even by using the Merritt coil. In this work, a new six-coil system for 3He polarization is obtained. Within the coils, the magnetic field gradient satisfies the requirement that √|▽Bx|2+|▽By|2/B0 -4 cm-1 in more than 30% area, which is better than all the existing coils used in polarized 3He experiments and can be applied to the future 3He instruments. For other experiments that require magnetic field to have a large uniform area, the new six-coil system is also a good option.
      通信作者: 胡碧涛, hubt@lzu.edu.cn;hyan@caep.cn ; 闫海洋, hubt@lzu.edu.cn;hyan@caep.cn
    • 基金项目: 国家重点研发计划“大科学装置前沿研究”重点专项(批准号:2016YFA0401500)和国家自然科学基金(批准号:11675152,91636103,11575073)资助的课题.
      Corresponding author: Hu Bi-Tao, hubt@lzu.edu.cn;hyan@caep.cn ; Yan Hai-Yang, hubt@lzu.edu.cn;hyan@caep.cn
    • Funds: Project supported by the National Key Program for Research and Development of China (Grant No. 2016YFA0401500) and the National Natural Science Foundation of China (Grant Nos. 11675152, 91636103, 11575073).
    [1]

    Laskaris G 2014 Phys. Rev. C 89 59

    [2]

    Tullney K, Allmendinger F, Burghoff M, Heil W, Karpuk S, Kilian W, Knappe-Gruneberg S, Muller M, Schmidt U, Schnabel A, Seifert F, Sobolev Y, Trahms L 2013 Phys. Rev. Lett. 111 100801

    [3]

    Yan H Y, Sun G A, Gong J, Pang B B, Wang Y, Yang Y W, Zhang J, Zhang Y 2014 Eur. Phys. J. C 74 1

    [4]

    Chu P H, Dennis A, Fu C B, Gao H Y, Khaiwada R, Laskaris G, Li K, Smith E, Snow W M, Yan H Y, Zhang W 2013 Phys. Rev. D 87 011105

    [5]

    Yan H Y, Sun G A, Peng S M, Zhang Y, Fu C B, Guo H, Liu B Q 2015 Phys. Rev. Lett. 115 182001

    [6]

    Limes M E, Sheng D, Romalis M V 2018 Phys. Rev. Lett. 120 033401

    [7]

    Nikiel A, Blmler P, Heil W, Hehn M, Karpuk S, Maul A, Otten E, Schreiber L M, Terekhov M 2014 Eur. Phys. J. D 68 1

    [8]

    Couch M J, Blasiak B, Tomanek B, Ouriadov A V, Fox M S, Dowhos K M, Albert M S 2015 Mol. Imaging Biol. 17 149

    [9]

    Jiang C Y, Tong X, Brown D R, Lee W T, Ambaye H, Craig J W, Crowa L, Culbertson H, Goyette R, Graves-Brook M K, Hagen M E, Kadron B, Lauter V, McCollum L W, Robertson J L, Winn B, Vandegrifta A E 2013 Phys. Procedia 42 191

    [10]

    Zheng W, Gao H Y, Liu J G, Zhang Y, Ye Q, Swank C 2011 Phys. Rev. A 84 053411

    [11]

    Guigue M, Pignol G, Golub R, Petukhov K A 2014 Phys. Rev. A 90 013407

    [12]

    Maxwell J D, Epstein C S, Milner R G 2015 Nucl. Instrum. Methods Phys. Res. Sect. A 777 194

    [13]

    Babcock E D 2005 Ph. D. Dissertation (Madison:University of Wisconsin-Madison)

    [14]

    Lu R C 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics) (in Chinese)[卢荣春 2009 博士学位论文 (兰州:中国近代物理研究所)]

    [15]

    Zhang Y 2011 Ph. D. Dissertation (Lanzhou:Lanzhou University) (in Chinese)[张毅 2011 博士学位论文 (兰州:兰州大学)]

    [16]

    Ding S Q 1985 CN Patent 85102592 (in Chinese)[丁守谦 1985 中国专利 CN85102592]

    [17]

    Merrittt R, Purcell C, Stroink G 1983 Rev. Sci. Instrum. 54 879

    [18]

    Gottardi G, Mesirca P, Agostini C, Remondini D, Bersani F 2003 Bioelectromagnetics 24 125

    [19]

    Gentile T R, Nacher P J, Saam B, Walker T G 2017 Rev. Mod. Phys. 89 045004

    [20]

    Mciver J W, Erwin R, Chen W C, Gentile T R 2009 Rev. Sci. Instrum. 80 168

  • [1]

    Laskaris G 2014 Phys. Rev. C 89 59

    [2]

    Tullney K, Allmendinger F, Burghoff M, Heil W, Karpuk S, Kilian W, Knappe-Gruneberg S, Muller M, Schmidt U, Schnabel A, Seifert F, Sobolev Y, Trahms L 2013 Phys. Rev. Lett. 111 100801

    [3]

    Yan H Y, Sun G A, Gong J, Pang B B, Wang Y, Yang Y W, Zhang J, Zhang Y 2014 Eur. Phys. J. C 74 1

    [4]

    Chu P H, Dennis A, Fu C B, Gao H Y, Khaiwada R, Laskaris G, Li K, Smith E, Snow W M, Yan H Y, Zhang W 2013 Phys. Rev. D 87 011105

    [5]

    Yan H Y, Sun G A, Peng S M, Zhang Y, Fu C B, Guo H, Liu B Q 2015 Phys. Rev. Lett. 115 182001

    [6]

    Limes M E, Sheng D, Romalis M V 2018 Phys. Rev. Lett. 120 033401

    [7]

    Nikiel A, Blmler P, Heil W, Hehn M, Karpuk S, Maul A, Otten E, Schreiber L M, Terekhov M 2014 Eur. Phys. J. D 68 1

    [8]

    Couch M J, Blasiak B, Tomanek B, Ouriadov A V, Fox M S, Dowhos K M, Albert M S 2015 Mol. Imaging Biol. 17 149

    [9]

    Jiang C Y, Tong X, Brown D R, Lee W T, Ambaye H, Craig J W, Crowa L, Culbertson H, Goyette R, Graves-Brook M K, Hagen M E, Kadron B, Lauter V, McCollum L W, Robertson J L, Winn B, Vandegrifta A E 2013 Phys. Procedia 42 191

    [10]

    Zheng W, Gao H Y, Liu J G, Zhang Y, Ye Q, Swank C 2011 Phys. Rev. A 84 053411

    [11]

    Guigue M, Pignol G, Golub R, Petukhov K A 2014 Phys. Rev. A 90 013407

    [12]

    Maxwell J D, Epstein C S, Milner R G 2015 Nucl. Instrum. Methods Phys. Res. Sect. A 777 194

    [13]

    Babcock E D 2005 Ph. D. Dissertation (Madison:University of Wisconsin-Madison)

    [14]

    Lu R C 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics) (in Chinese)[卢荣春 2009 博士学位论文 (兰州:中国近代物理研究所)]

    [15]

    Zhang Y 2011 Ph. D. Dissertation (Lanzhou:Lanzhou University) (in Chinese)[张毅 2011 博士学位论文 (兰州:兰州大学)]

    [16]

    Ding S Q 1985 CN Patent 85102592 (in Chinese)[丁守谦 1985 中国专利 CN85102592]

    [17]

    Merrittt R, Purcell C, Stroink G 1983 Rev. Sci. Instrum. 54 879

    [18]

    Gottardi G, Mesirca P, Agostini C, Remondini D, Bersani F 2003 Bioelectromagnetics 24 125

    [19]

    Gentile T R, Nacher P J, Saam B, Walker T G 2017 Rev. Mod. Phys. 89 045004

    [20]

    Mciver J W, Erwin R, Chen W C, Gentile T R 2009 Rev. Sci. Instrum. 80 168

  • [1] 杨三祥, 赵以德, 代鹏, 李建鹏, 谷增杰, 孟伟, 耿海, 郭宁, 贾艳辉, 杨俊泰. 霍尔推力器中电子碰撞及等离子体密度和磁场梯度激发的不稳定性. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241330
    [2] 赵兴宇, 王丽娜, 韩宏博, 尚洁莹. 系列小分子液体中α弛豫与探针离子电导行为的对比. 物理学报, 2024, 73(14): 147701. doi: 10.7498/aps.73.20240478
    [3] 杨三祥, 赵以德, 代鹏, 李建鹏, 耿海, 杨俊泰, 贾艳辉, 郭宁. 羽流区磁场对霍尔推力器性能影响的二维模拟研究. 物理学报, 2024, 73(24): 245202. doi: 10.7498/aps.73.20241331
    [4] 陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟. 聚合物分散液晶薄膜的极化特性及其对电光性能的影响. 物理学报, 2023, 72(17): 177701. doi: 10.7498/aps.72.20230664
    [5] 王鹏, 潘凤春, 郭晶晶, 李婷婷, 王旭明. 用双稳态势场模型研究观点转变的驱动-响应关系. 物理学报, 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
    [6] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间. 物理学报, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [7] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [8] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律. 物理学报, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [9] 张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤. 可激发气体振动弛豫时间的两频点声测量重建算法. 物理学报, 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [10] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系. 物理学报, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [11] 王兵, 吴秀清. 双色噪声驱动光学双稳系统的弛豫时间研究. 物理学报, 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [12] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究. 物理学报, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [13] 胡德志. 脉冲激光烧蚀中电声弛豫时间的确定. 物理学报, 2009, 58(2): 1077-1082. doi: 10.7498/aps.58.1077
    [14] 赵建玉, 孙喜明, 贾 磊. 气体分子动力学交通流模型弛豫时间的改进. 物理学报, 2006, 55(5): 2306-2312. doi: 10.7498/aps.55.2306
    [15] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [16] 马燕云, 常文蔚, 银 燕, 岳宗五, 曹莉华, 刘大庆. 等离子体粒子模拟中的一种碰撞模型. 物理学报, 2000, 49(8): 1513-1519. doi: 10.7498/aps.49.1513
    [17] 杨继春, 吴钦义, 叶朝辉. AX体系多量子弛豫时间的直接探测. 物理学报, 1986, 35(1): 74-81. doi: 10.7498/aps.35.74
    [18] 刘大江, 陈教芳. 红宝石Cr3+离子的自旋-晶格弛豫时间和浓度效应. 物理学报, 1966, 22(2): 183-187. doi: 10.7498/aps.22.183
    [19] 黄武汉, 楼祺洪. 红宝石中自旋-晶格弛豫时间与角度的关系. 物理学报, 1966, 22(1): 125-126. doi: 10.7498/aps.22.125
    [20] 施士元, 张国焕. 无序到有序恒温转变的弛豫时间. 物理学报, 1956, 12(1): 80-82. doi: 10.7498/aps.12.80
计量
  • 文章访问数:  6816
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-05-25
  • 刊出日期:  2018-09-05

/

返回文章
返回