搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自润湿流体液滴的热毛细迁移特性

叶学民 张湘珊 李明兰 李春曦

引用本文:
Citation:

自润湿流体液滴的热毛细迁移特性

叶学民, 张湘珊, 李明兰, 李春曦

Thermocapillary migration characteristics of self-rewetting drop

Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi
PDF
导出引用
  • 采用数值模拟方法研究了自润湿流体液滴的热毛细迁移特性.基于润滑理论和滑移边界条件建立了二维液滴运动的演化模型,分析了液气界面张力极小值对应温度在壁面上的位置(临界点)与液滴位置间的相对关系对液滴运动特性的影响.结果表明,对于壁面润湿性不随温度变化的情形,随液滴初始位置相对临界点的向左移动,液滴的迁移方向发生改变,但液滴受热毛细力驱动总是向界面张力高的方向移动.对于壁面润湿性随温度变化的情形,无论液滴初始放置于临界点何处,受高温侧壁面润湿性恶化的影响,液滴均向低温区迁移;随液滴初始位置相对临界点的向左移动,液滴受方向向左的热毛细力增大,提高了其向低温区的迁移速率.控制自润湿流体液滴运动可通过调控临界点与液滴位置间的关系来实现,欲抑制液滴向低温区的迁移,则应将液滴放置于临界点右侧.
    The thermocapillary migration characteristics of a self-wetting drop on the non-uniformly heated, horizontal, solid substrate are investigagted by numerical simulation. Based on the lubrication theory, an evolution equation for the height of the two-dimensional drop is established. The substrate underlying the drop is subjected to a temperature gradient which induces surface tension gradient-driven drop deformation and migration. The self-rewetting fluid has non-monotonic dependence of the surface tension on temperature with a well-defined minimum, and the position of the minimum corresponding to the temperature on the substrate is called the critical point. The effect of the relationship between the critical point and the drop position on drop dynamics is analyzed. With the temperature sensitivity coefficient of three interfaces under the same condition, the substrate is illustrated with constant wettability. The direction of drop migration will alter as the initial drop location moves to the left relative to the critical point position, resulting from the variation of the interplay among thermocapillary, gravity, and capillarity forces within the drop. But the drop always migrates toward the high interfacial tension region due to the thermocapillary force. In the presence of substrate wettability variations, the drop migrates toward the low temperature region no matter where the drop is placed relative to the critical point. This is due to the fact that the deterioration of substrate wettability on the right side of the drop prevents the drop from migrating toward the hot region. Under the critical point being on the left or within the drop, as the initial drop location moves to the left relative to the critical point position, the enhancement of the thermocapillary force toward the left leads to increased moving speed of the left contact line and increased spreading area. When the critical point is positioned on the outer right side of the drop, the speed of the left contact line sharply decreases at t=6103, caused by the suddenly deteriorating substrate wettability. Hence, it is effective to manipulate the self-wetting drop movement by regulating the relationship between the critical point and the initial drop location. To inhibit the migration of the drop toward the cold region, the drop should be placed on the right side of the critical point.
      通信作者: 李春曦, leechunxi@163.com
    • 基金项目: 国家自然科学基金(批准号:11202079)和中央高校基本科研业务费项目(批准号:13MS97)资助的课题.
      Corresponding author: Li Chun-Xi, leechunxi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Fundamental Research for the Central Universities, China (Grant No. 13MS97).
    [1]

    Wu Z B 2017 Int. J. Heat Mass Transf. 105 704

    [2]

    Chaudhury K, Chakraborty S 2015 Langmuir 31 4169

    [3]

    Legros J C, Limbourg-Fontaine M C, Petre G 1984 Acta Astronaut. 11 143

    [4]

    Abe Y, Iwasaki A, Tanaka K 2004 Ann. NY Acad. Sci. 1027 269

    [5]

    Oron A, Rosenau P 1994 J. Fluid Mech. 273 361

    [6]

    Batson W, Agnon Y, Oron A 2017 J. Fluid Mech. 819 562

    [7]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [8]

    Mamalis D, Koutsos V, Sefiane K 2016 Appl. Phys. Lett. 109 231601

    [9]

    Mamalis D, Koutsos V, Sefiane K 2017 Int. J. Therm. Sci. 117 146

    [10]

    Ouenzerfi S, Harmand S 2016 Langmuir 32 2378

    [11]

    Di Francescantonio N, Savino R, Abe Y 2008 Int. J. Heat Mass Transf. 51 6199

    [12]

    Hu Y, Zhang S, Li X, Wang S 2015 Int. J. Heat Mass Transf. 83 64

    [13]

    Zhou L P, Li Y Y, Wei L T, Du X Z, Wang B X 2014 J. Chem. Ind. Eng. 65 79 (in Chinese) [周乐平, 李媛园, 魏龙亭, 杜小泽, 王补宣 2014 化工学报 65 79]

    [14]

    Sitar A, Golobic I 2015 Int. J. Heat Mass Transf. 81 198

    [15]

    Wu S C 2015 Int. J. Therm. Sci. 98 374

    [16]

    Gao P, Yin Z H, Hu W R 2008 Adv. Mech. 38 329 (in Chinese) [高鹏, 尹兆华, 胡文瑞 2008 力学进展 38 329]

    [17]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125

    [18]

    Pratap V, Moumen N, Subramanian R S 2008 Langmuir 24 5185

    [19]

    Nguyen H B, Chen J C 2010 Phys. Fluids 22 062102

    [20]

    Dai Q, Khonsari M M, Shen C, Huang W, Wang X 2016 Langmuir 32 7485

    [21]

    Sui Y 2014 Phys. Fluids 26 092102

    [22]

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704 (in Chinese) [叶学民, 李永康, 李春曦 2016 物理学报 65 104704]

    [23]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838

    [24]

    Zhao Y P 2012 Phys. Mech. Surf. Interface (Beijing: Science Press) p185, 186 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社)第185, 186 页]

    [25]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [26]

    Craster R V, Matar O K 2000 J. Fluid Mech. 425 235

    [27]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [28]

    Karapetsas G, Sahu K C, Matar O K 2016 Langmuir 32 6871

    [29]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365

    [30]

    Bakli C, Sree Hari P D, Chakraborty S 2017 Nanoscale 9 12509

  • [1]

    Wu Z B 2017 Int. J. Heat Mass Transf. 105 704

    [2]

    Chaudhury K, Chakraborty S 2015 Langmuir 31 4169

    [3]

    Legros J C, Limbourg-Fontaine M C, Petre G 1984 Acta Astronaut. 11 143

    [4]

    Abe Y, Iwasaki A, Tanaka K 2004 Ann. NY Acad. Sci. 1027 269

    [5]

    Oron A, Rosenau P 1994 J. Fluid Mech. 273 361

    [6]

    Batson W, Agnon Y, Oron A 2017 J. Fluid Mech. 819 562

    [7]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [8]

    Mamalis D, Koutsos V, Sefiane K 2016 Appl. Phys. Lett. 109 231601

    [9]

    Mamalis D, Koutsos V, Sefiane K 2017 Int. J. Therm. Sci. 117 146

    [10]

    Ouenzerfi S, Harmand S 2016 Langmuir 32 2378

    [11]

    Di Francescantonio N, Savino R, Abe Y 2008 Int. J. Heat Mass Transf. 51 6199

    [12]

    Hu Y, Zhang S, Li X, Wang S 2015 Int. J. Heat Mass Transf. 83 64

    [13]

    Zhou L P, Li Y Y, Wei L T, Du X Z, Wang B X 2014 J. Chem. Ind. Eng. 65 79 (in Chinese) [周乐平, 李媛园, 魏龙亭, 杜小泽, 王补宣 2014 化工学报 65 79]

    [14]

    Sitar A, Golobic I 2015 Int. J. Heat Mass Transf. 81 198

    [15]

    Wu S C 2015 Int. J. Therm. Sci. 98 374

    [16]

    Gao P, Yin Z H, Hu W R 2008 Adv. Mech. 38 329 (in Chinese) [高鹏, 尹兆华, 胡文瑞 2008 力学进展 38 329]

    [17]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125

    [18]

    Pratap V, Moumen N, Subramanian R S 2008 Langmuir 24 5185

    [19]

    Nguyen H B, Chen J C 2010 Phys. Fluids 22 062102

    [20]

    Dai Q, Khonsari M M, Shen C, Huang W, Wang X 2016 Langmuir 32 7485

    [21]

    Sui Y 2014 Phys. Fluids 26 092102

    [22]

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704 (in Chinese) [叶学民, 李永康, 李春曦 2016 物理学报 65 104704]

    [23]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838

    [24]

    Zhao Y P 2012 Phys. Mech. Surf. Interface (Beijing: Science Press) p185, 186 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社)第185, 186 页]

    [25]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [26]

    Craster R V, Matar O K 2000 J. Fluid Mech. 425 235

    [27]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [28]

    Karapetsas G, Sahu K C, Matar O K 2016 Langmuir 32 6871

    [29]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365

    [30]

    Bakli C, Sree Hari P D, Chakraborty S 2017 Nanoscale 9 12509

  • [1] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究. 物理学报, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制. 物理学报, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [3] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性. 物理学报, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [4] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [5] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [6] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [7] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [8] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [9] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] 叶学民, 李永康, 李春曦. 受热基底上的液滴铺展及换热特性. 物理学报, 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [11] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [12] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [13] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [14] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [15] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [16] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [17] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [18] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [19] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [20] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
计量
  • 文章访问数:  6287
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-05-09
  • 刊出日期:  2019-09-20

/

返回文章
返回