搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁硒基超导研究新进展:高质量(Li,Fe)OHFeSe单晶薄膜

董晓莉 袁洁 黄裕龙 冯中沛 倪顺利 田金朋 周放 金魁 赵忠贤

引用本文:
Citation:

铁硒基超导研究新进展:高质量(Li,Fe)OHFeSe单晶薄膜

董晓莉, 袁洁, 黄裕龙, 冯中沛, 倪顺利, 田金朋, 周放, 金魁, 赵忠贤

New progress on FeSe-based superconductors: high-quality and high-critical-parameter (Li, Fe)OHFeSe thin film

Dong Xiao-Li, Yuan Jie, Huang Yu-Long, Feng Zhong-Pei, Ni Shun-Li, Tian Jin-Peng, Zhou Fang, Jin Kui, Zhao Zhong-Xian
PDF
导出引用
  • 单晶薄膜形态的高温超导材料对于相关基础科学研究和应用开发都极为重要.多带的铁基高温超导体往往呈现丰富的物理现象,并具有较高的超导临界参数.特别是近年发现的插层(Li,Fe)OHFeSe超导体,无论对高温超导机理还是应用研究而言,都日益受到重视,已成为铁基家族中重要的典型材料.但是,该化合物含有OH键,加热易分解.因此,现有的常规高温成膜技术均不适用于生长该薄膜材料.为解决这一生长难题,我们最近发明了基体辅助水热外延生长法,实现了超导薄膜制备技术上的突破.本文简要介绍用此软化学成膜技术首次成功制备出(Li,Fe)OHFeSe单晶薄膜.该薄膜材料具有优良的结晶质量和较高的超导临界参数,特别是其高的临界电流密度和上临界场对应用开发有实际价值.因此,(Li,Fe)OHFeSe超导单晶薄膜的成功合成,为机理研究和应用开发分别提供了重要的实验载体和备选材料.另外,该薄膜技术也有望应用于其他功能材料的探索与合成,尤其是对常规手段难以获取的材料更具重大价值.
    High-quality superconducting thin films play an important role in the application and basic research of high-Tc superconductivity. In these aspects, iron-based superconductors feature the merits of rich physical phenomena and high superconducting critical parameters (including the transition temperature Tc, the upper critical field Hc2 and the critical current density Jc). The recently discovered high-Tc (Li,Fe)OHFeSe superconductor proves to be an important material for the studies of the mechanism and application of unconventional high-Tc superconductivity. However, due to the hydroxyl ion inherent in the compound, none of the conventional high-temperature synthesis methods is applicable for (Li,Fe)OHFeSe materials in bulk and thin film forms. Recently, by developing a hydrothermal ion-exchange technique, we have synthesized for the first time big and high-quality single crystals of (Li,Fe)OHFeSe (2015 Phys. Rev. B 92 064515). Here in this paper, we brief our most recent progress on growing a high-quality single-crystalline superconducting film of (Li,Fe)OHFeSe (2017 Chin. Phys. Lett. 34 077404). The film has been prepared on a LaAlO3 substrate by a hydrothermal epitaxial method. The high crystalline quality of the film is verified by X-ray diffraction (XRD). The XRD measurements show a single (001) orientation with a small crystal mosaic of 0.22 in terms of the full width at half maximum of the rocking curve, as well as an excellent in-plane orientation revealed by the -scan of (101) plane. Its bulk superconducting transition temperature Tc of 42.4 K is determined by both zero electrical resistance and diamagnetism measurements. Based on systematic magnetoresistance measurements, the upper critical field Hc2 is estimated to be 79.5 T and 443 T for the magnetic field perpendicular and parallel to the ab plane, respectively. Moreover, a large critical current density Jc of a value over 0.5 MA/cm2 is achieved at ~20 K. Such a (Li,Fe)OHFeSe film therefore is not only important for the fundamental research for understanding the high-Tc mechanism, but also promising for the applications in high-performance electronic devices and large scientific facilities such as superconducting accelerator.
      Corresponding author: Dong Xiao-Li, dong@iphy.ac.cn;kuijin@iphy.ac.cn;zhxzhao@iphy.ac.cn ; Jin Kui, dong@iphy.ac.cn;kuijin@iphy.ac.cn;zhxzhao@iphy.ac.cn ; Zhao Zhong-Xian, dong@iphy.ac.cn;kuijin@iphy.ac.cn;zhxzhao@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0303000), the National Natural Science Foundation of China (Grant No. 11574370), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001, QYZDY-SSW-SLH008), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).
    [1]

    Johnston D C 2010 Adv. Phys. 59 803

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Dagotto E 2013 Rev. Mod. Phys. 85 849

    [5]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371

    [6]

    Putti M, Pallecchi I, Bellingeri E, Cimberle M R, Tropeano M, Ferdeghini C, Palenzona A, Tarantini C, Yamamoto A, Jiang J, Jaroszynski J, Kametani F, Abraimov D, Polyanskii A, Weiss J D, Hellstrom E E, Gurevich A, Larbalestier D C, Jin R, Sales B C, Sefat A S, McGuire M A, Mandrus D, Cheng P, Jia Y, Wen H H, Lee S, Eom C B 2010 Supercond. Sci. Technol. 23 034003

    [7]

    Hosono H, Tanabe K, Takayama-Muromachi E, Kageyama H, Yamanaka S, Kumakura H, Nohara M, Hiramatsu H, Fujitsu S 2015 Sci. Technol. Adv. Mater. 16 033503

    [8]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [9]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520R

    [11]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [12]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [13]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [14]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [15]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [16]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nat. Commun. 3 931

    [17]

    Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [18]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [19]

    Shi X, Han Z Q, Peng X L, Richard P, Qian T, Wu X X, Qiu M W, Wang S C, Hu J P, Sun Y J, Ding H 2017 Nat. Commun. 8 14988

    [20]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [21]

    Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F, Zhao Z 2015 Phys. Rev. B 92 064515

    [22]

    Du Z, Yang X, Lin H, Fang D, Du G, Xing J, Yang H, Zhu X, Wen H H 2016 Nat. Commun. 7 10565

    [23]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [24]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [25]

    Khasanov R, Zhou H, Amato A, Guguchia Z, Morenzoni E, Dong X, Zhang G, Zhao Z 2016 Phys. Rev. B 93 224512

    [26]

    Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J, Rodriguez E E 2016 J. Mater. Chem. C 4 3934

    [27]

    Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504

    [28]

    Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A, Zhao J 2017 Nat. Commun. 8 123

    [29]

    Wang Z, Yuan J, Wosnitza J, Zhou H, Huang Y, Jin K, Zhou F, Dong X, Zhao Z 2017 J. Phys.:Condens. Matter 29 025701

    [30]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

    [31]

    Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X, Zhao Z 2017 Chin. Phys. Lett. 34 077404

  • [1]

    Johnston D C 2010 Adv. Phys. 59 803

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Dagotto E 2013 Rev. Mod. Phys. 85 849

    [5]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371

    [6]

    Putti M, Pallecchi I, Bellingeri E, Cimberle M R, Tropeano M, Ferdeghini C, Palenzona A, Tarantini C, Yamamoto A, Jiang J, Jaroszynski J, Kametani F, Abraimov D, Polyanskii A, Weiss J D, Hellstrom E E, Gurevich A, Larbalestier D C, Jin R, Sales B C, Sefat A S, McGuire M A, Mandrus D, Cheng P, Jia Y, Wen H H, Lee S, Eom C B 2010 Supercond. Sci. Technol. 23 034003

    [7]

    Hosono H, Tanabe K, Takayama-Muromachi E, Kageyama H, Yamanaka S, Kumakura H, Nohara M, Hiramatsu H, Fujitsu S 2015 Sci. Technol. Adv. Mater. 16 033503

    [8]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [9]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520R

    [11]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [12]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [13]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [14]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [15]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [16]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nat. Commun. 3 931

    [17]

    Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [18]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [19]

    Shi X, Han Z Q, Peng X L, Richard P, Qian T, Wu X X, Qiu M W, Wang S C, Hu J P, Sun Y J, Ding H 2017 Nat. Commun. 8 14988

    [20]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [21]

    Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F, Zhao Z 2015 Phys. Rev. B 92 064515

    [22]

    Du Z, Yang X, Lin H, Fang D, Du G, Xing J, Yang H, Zhu X, Wen H H 2016 Nat. Commun. 7 10565

    [23]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [24]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [25]

    Khasanov R, Zhou H, Amato A, Guguchia Z, Morenzoni E, Dong X, Zhang G, Zhao Z 2016 Phys. Rev. B 93 224512

    [26]

    Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J, Rodriguez E E 2016 J. Mater. Chem. C 4 3934

    [27]

    Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504

    [28]

    Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A, Zhao J 2017 Nat. Commun. 8 123

    [29]

    Wang Z, Yuan J, Wosnitza J, Zhou H, Huang Y, Jin K, Zhou F, Dong X, Zhao Z 2017 J. Phys.:Condens. Matter 29 025701

    [30]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

    [31]

    Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X, Zhao Z 2017 Chin. Phys. Lett. 34 077404

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 王垚, 姜璐, 周又和, 薛存. 超导薄膜磁-热不稳定与强非线性电磁本构的关联性. 物理学报, 2022, 71(20): 207401. doi: 10.7498/aps.71.20220285
    [3] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [4] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [5] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响. 物理学报, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [6] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [7] 王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏. 低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理. 物理学报, 2018, 67(3): 036103. doi: 10.7498/aps.67.20170822
    [8] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [9] 张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充. 纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响. 物理学报, 2015, 64(24): 247401. doi: 10.7498/aps.64.247401
    [10] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用. 物理学报, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [11] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系. 物理学报, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [12] 张鲁山, 于洪飞, 郭永权. FeTe合金结构分析及其薄膜制备. 物理学报, 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [13] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [14] 史力斌, 郑 岩, 任骏原, 李明标, 张国华. YBa2Cu3O7-δ/LaAlO3和Tl2Ba2CaCu2O8/LaAlO3高温超导薄膜内的应变对其微波表面电阻影响的研究. 物理学报, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [15] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响. 物理学报, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [16] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [17] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [18] 韩谷昌, 韩汉民, 王智河, 王顺喜, 刘小宁, 刘智民, 奚正平, 周廉. 银包套Bi(2223)带材临界电流密度的低温强磁场特性. 物理学报, 1995, 44(8): 1274-1278. doi: 10.7498/aps.44.1274
    [19] 吴杭生. 合金薄膜的临界磁场. 物理学报, 1965, 21(1): 132-139. doi: 10.7498/aps.21.132
    [20] 雷啸霖, 吴杭生. 在强磁场中金属薄膜的超导电理论(Ⅱ)——超导薄膜的临界磁场. 物理学报, 1964, 20(10): 991-1002. doi: 10.7498/aps.20.991
计量
  • 文章访问数:  6694
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22
  • 修回日期:  2018-05-04
  • 刊出日期:  2019-06-20

/

返回文章
返回