搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金红石TiO2中本征缺陷扩散性质的第一性原理计算

刘汝霖 方粮 郝跃 池雅庆

引用本文:
Citation:

金红石TiO2中本征缺陷扩散性质的第一性原理计算

刘汝霖, 方粮, 郝跃, 池雅庆

Density functional theory calculation of diffusion mechanism of intrinsic defects in rutile TiO2

Liu Ru-Lin, Fang Liang, Hao Yue, Chi Ya-Qing
PDF
导出引用
  • 基于密度泛函理论的爬坡弹性带方法,对金红石相二氧化钛晶体中钛间隙、钛空位、氧间隙、氧空位4种本征缺陷的扩散特征进行了研究.对比4种本征缺陷在晶格内部沿不同扩散路径的过渡态势垒后发现,缺陷扩散过程呈现出明显的各向异性.其中,钛间隙和氧间隙沿[001]方向具有最小的扩散势垒路径,激活能分别为0.505 eV和0.859 eV;氧空位和钛空位的势垒最小的扩散路径分别沿[110]方向和[111]方向,激活能分别为0.735 eV和2.375 eV.
    Diffusion mechanisms of four intrinsic point defects in rutile TiO2, titanium interstitial (TiI), titanium vacancy (Vti), oxygen interstitial (OI) and oxygen vacancy (VO) are studied in the framework of density functional theory with quantum ESPRESSO suite. Diffusion processes are simulated by defect movement between two stable atomic configurations through using the climbing image nudged elastic band (CI-NEB) method.The initial and final atomic structure in the minimum energy path (MEP) are constructed with 3×3×4 perfect supercell matrix of 216 atoms. Considering that oxygen atoms build up TiO6 octahedron and half of the octahedral centers are occupied by Ti atoms in rutile, interstitial defect is constructed by adding one Ti or O atom to the empty oxygen octahedral center, and vacancy defect is constructed by removing one atom from crystal lattice grid. Structural relaxation is performed before performing the NEB calculation with gamma k point sampling in irreducible Brillouin zone with an energy cutoff of 650 eV. As rutile TiO2 has tetragonal symmetry (P42/mnm), the diffusion channel along the[100] direction is equivalent to the[010] direction. Then, the diffusion paths along the direction parallel to c axis ([001] direction) and perpendicular to the c axis ([100] or[110] direction) are chosen to find the minimum diffusion energy path of TiI and OI. As for VTi and VO, diffusion paths are established from the vacancy site to nearest lattice site of the same kind.Calculation results exhibit significant anisotropy of energy barrier and diffusion mechanism. Of all defect species, TiI diffusion along the[001] direction through interstitial mechanism has the lowest activation barrier of 0.5057 eV. In addition, diffusions along the[100] and[110] direction through kick-out mechanism show higher energy barriers of 1.0024 eV and 2.7758 eV, respectively. Compared with TiI, OI shows small barrier discrepancy between different diffusion directions, which is 0.859 eV along[001] and 0.902 eV along[100] direction. For vacancy defects, diffusion can occur only through the vacancy mechanism. The activation barrier energy of symmetrically inequivalent diffusion path of VO is 0.735 eV along the[110] direction, 1.747 eV along the[001] direction, and 1.119 eV from the TiO6 apex site to the equator site. On the other hand, VTi has two inequivalent paths with much larger diffusion energy barriers:2.375 eV along the[111] direction and 3.232 eV along the[001] direction. In summary, the TiI interstitial diffusion along the[001] direction (parallel to the c axis) has the lowest activation barrier in rutile TiO2, which is in excellent agreement with former experimental and theoretical data.
      通信作者: 方粮, lfang@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61332003)和湖南省自然科学基金(批准号:2015JJ3024)资助的课题.
      Corresponding author: Fang Liang, lfang@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61332003) and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3024).
    [1]

    Kim S, Brown S L, Rossnagel S M, Bruley J, Copel M, Hopstaken M J, Narayanan V, Frank M M 2010 J. Appl. Phys. 107 054102

    [2]

    Tang Z, Fang L, Xu N, Liu R 2015 J. Appl. Phys. 118 80

    [3]

    Tang Z, Chi Y, Fang L, Liu R, Yi X 2014 J. Nanosci. Nanotechnol. 14 1494

    [4]

    Choi B, Jeong D, Kim S, Rohde C, Choi S, Oh J, Kim H, Hwang C, Szot K, Waser R 2005 J. Appl. Phys. 98 033715

    [5]

    Magyari-Köpe B, Tendulkar M, Park S G, Lee H D, Nishi Y 2011 Nanotechnology 22 254029

    [6]

    Ghenzi N, Sánchez M J, Rubi D, Rozenberg M J, Urdaniz C, Weissman M, Levy P 2014 Appl. Phys. Lett. 104 1625

    [7]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese)[张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [8]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese)[侯清玉, 乌云, 赵春旺 2013 物理学报 62 237101]

    [9]

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101 (in Chinese)[林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101]

    [10]

    Peng H 2008 Phys. Lett. A 372 1527

    [11]

    Smyth D M 2000 The Defect Chemistry of Metal Oxide (New York:Oxford University Press) pp95-219

    [12]

    Huntington H B, Sullivan G A 1965 Phys. Rev. Lett. 14 932

    [13]

    Iddir H,Öğt S, Zapol P, Browning N D 2007 Phys. Rev. B 75 794

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.:Condens. Matter 21 395502

    [15]

    Andreussi O, Brumme T, Bunau O, Buongiorno M N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N 2017 J. Phys.:Condens. Matter 29 465901

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2007 Phys. Rev. Lett. 101 136406

    [17]

    Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blgel S, Blum V, Caliste D, Castelli I E, Clark S J, Dal C A 2016 Science 351 aad3000

    [18]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106

    [19]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [20]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [21]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Yu M, Trinkle D R 2011 J. Chem. Phys. 134 064111

    [24]

    Nowotny J 2012 Oxide Semiconductors for Solar Energy Conversion-Titanium Dioxide (New York:CRC Press) p150

    [25]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [26]

    Baumard J F 1976 Solid State Commun. 20 859

    [27]

    Nowotny M, Bak T, Nowotny J 2006 J. Phys. Chem. B 110 16292

    [28]

    Nowotny J, Bak T, Nowotny M, Sheppard C 2005 Phys. Status Solidi b 242 R91

  • [1]

    Kim S, Brown S L, Rossnagel S M, Bruley J, Copel M, Hopstaken M J, Narayanan V, Frank M M 2010 J. Appl. Phys. 107 054102

    [2]

    Tang Z, Fang L, Xu N, Liu R 2015 J. Appl. Phys. 118 80

    [3]

    Tang Z, Chi Y, Fang L, Liu R, Yi X 2014 J. Nanosci. Nanotechnol. 14 1494

    [4]

    Choi B, Jeong D, Kim S, Rohde C, Choi S, Oh J, Kim H, Hwang C, Szot K, Waser R 2005 J. Appl. Phys. 98 033715

    [5]

    Magyari-Köpe B, Tendulkar M, Park S G, Lee H D, Nishi Y 2011 Nanotechnology 22 254029

    [6]

    Ghenzi N, Sánchez M J, Rubi D, Rozenberg M J, Urdaniz C, Weissman M, Levy P 2014 Appl. Phys. Lett. 104 1625

    [7]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese)[张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [8]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese)[侯清玉, 乌云, 赵春旺 2013 物理学报 62 237101]

    [9]

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101 (in Chinese)[林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101]

    [10]

    Peng H 2008 Phys. Lett. A 372 1527

    [11]

    Smyth D M 2000 The Defect Chemistry of Metal Oxide (New York:Oxford University Press) pp95-219

    [12]

    Huntington H B, Sullivan G A 1965 Phys. Rev. Lett. 14 932

    [13]

    Iddir H,Öğt S, Zapol P, Browning N D 2007 Phys. Rev. B 75 794

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.:Condens. Matter 21 395502

    [15]

    Andreussi O, Brumme T, Bunau O, Buongiorno M N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N 2017 J. Phys.:Condens. Matter 29 465901

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2007 Phys. Rev. Lett. 101 136406

    [17]

    Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blgel S, Blum V, Caliste D, Castelli I E, Clark S J, Dal C A 2016 Science 351 aad3000

    [18]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106

    [19]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [20]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [21]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Yu M, Trinkle D R 2011 J. Chem. Phys. 134 064111

    [24]

    Nowotny J 2012 Oxide Semiconductors for Solar Energy Conversion-Titanium Dioxide (New York:CRC Press) p150

    [25]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [26]

    Baumard J F 1976 Solid State Commun. 20 859

    [27]

    Nowotny M, Bak T, Nowotny J 2006 J. Phys. Chem. B 110 16292

    [28]

    Nowotny J, Bak T, Nowotny M, Sheppard C 2005 Phys. Status Solidi b 242 R91

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算. 物理学报, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 徐思源, 张召富, 王俊, 刘雪飞, 郭宇铮. MoSi2N4的本征点缺陷以及掺杂特性的第一性原理计算. 物理学报, 2024, 73(8): 086801. doi: 10.7498/aps.73.20231931
    [3] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [4] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [5] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [6] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [7] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双. Al原子在Si表面扩散动力学的第一性原理研究. 物理学报, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [8] 杨亮, 王才壮, 林仕伟, 曹阳. 氧原子在钛晶体中扩散的第一性原理研究. 物理学报, 2017, 66(11): 116601. doi: 10.7498/aps.66.116601
    [9] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算. 物理学报, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [10] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [11] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [12] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [13] 朱洪强, 冯庆. 光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究. 物理学报, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [14] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [15] 高雪云, 王海燕, 李春龙, 任慧平, 李德超, 刘宗昌. 稀土La对bcc-Fe中Cu扩散行为影响的第一性原理研究. 物理学报, 2014, 63(24): 248101. doi: 10.7498/aps.63.248101
    [16] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [17] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算. 物理学报, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [18] 何旭, 何林, 唐明杰, 徐明. 第一性原理研究空位点缺陷对高压下LiF的电子结构和光学性质的影响. 物理学报, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [19] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [20] 程萍, 张玉明, 张义门, 王悦湖, 郭辉. 非故意掺杂4H-SiC外延材料本征缺陷的热稳定性. 物理学报, 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
计量
  • 文章访问数:  7160
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-05-26
  • 刊出日期:  2018-09-05

/

返回文章
返回