搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性斯格明子的多场调控研究

董博闻 张静言 彭丽聪 何敏 张颖 赵云驰 王超 孙阳 蔡建旺 王文洪 魏红祥 沈保根 姜勇 王守国

引用本文:
Citation:

磁性斯格明子的多场调控研究

董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国

Multi-field control on magnetic skyrmions

Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo
PDF
导出引用
  • 斯格明子(skyrmion)的概念最早是由英国的粒子物理学家Tony Skyrme提出,它被用来描述粒子的一个状态,是一种拓扑孤立子.磁性斯格明子是一种具有拓扑行为的新型磁结构,其空间尺寸为纳米量级,空间距离从纳米到微米量级可调;其存在温度涵盖从低温、室温到高温的宽温区;其材料体系不仅包括早期发现的低温区B20型中心对称破缺的铁磁体和螺旋磁有序的弱铁磁材料,也包括近期发现的室温及以上的中心对称六角结构磁性MnNiGa金属合金和磁性薄膜/多层膜体系.利用磁性斯格明子的拓扑磁结构可以实现类似于自旋阀或者磁性隧道结中的自旋转移矩效应,即外加电流可以驱动斯格明子,其临界电流密度比传统翻转磁性多层膜体系中磁矩的电流密度(一般为107 A/cm2)要低5个数量级,约为102 A/cm2,该临界值远低于硅基半导体技术中沟道电流密度的上限,在未来的磁信息技术中具有广泛的应用前景.本综述简单介绍了磁性斯格明子的发展历程,归纳总结了磁性斯格明子的材料体系,介绍了观察磁性斯格明子的实验手段,重点介绍了多场(磁场、电流、温度场)调控作用下中心对称MnNiGa合金和Pt/Co/Ta磁性多层膜体系中磁性斯格明子的产生、消失以及外场调控演变等动态行为.
    The concept of skyrmion is proposed by Tony Skyrme, a British particle physicist, to describe a state of particles as a topological soliton. Magnetic skyrmion is a novel spin structure with topological behavior, whose size is on a nanometer scale. The space between skyrmions is tunable from a few nanometers to micrometer. Magnetic skyrmion can be stable in a large temperature range, from lower temperatures, to room temperature, and even to higher temperature. The materials with magnetic skyrmions include not only low temperature B20-type ferromagnets with centrosymmetry breaking and weak ferromagnets with helical magnetic ordering, but also the hexagonal MnNiGa alloy and ferromagnetic multilayers over room temperature. By using topological spin structure of skyrmions, an electrical current can be applied to driving or flipping the skyrmions, similar to the spin transfer torque effect in spin-valves and magnetic tunnel junctions. The critical current density is on the order of 102 A/cm2, which is five orders lower than that in magnetic multilayered structures such as 107 A/cm2. This critical value is much lower than the channel current density in Si-based semiconductor technology, thus leading to great potential applications in the future magnetic information devices. In this review paper, we first introduce the discovery, a brief development history of magnetic skyrmions. Then, we summarize the materials with skyrmion spin structures, focusing on the key physical properties. Finally, we mention the recent progress of the multi-field (such as magnetic field, electrical current, and temperature) control on magnetic skyrmions in hexagonal MnNiGa alloy and Pt/Co/Ta magnetic multilayers, together with the creation, annihilation, and dynamic behavior of skyrmions.
      通信作者: 张颖, zhangy@iphy.ac.cn;sgwang@ustb.edu.cn ; 王守国, zhangy@iphy.ac.cn;sgwang@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51625101,51431009,51471183,11674373)、国家重点基础研究发展计划(批准号:2015CB921401,2016YFB0700902)、中央高校基本科研业务费(批准号:FRF-TP-16-OO1C2)和中国科学院青年创新促进会(批准号:2015004)资助的课题.
      Corresponding author: Zhang Ying, zhangy@iphy.ac.cn;sgwang@ustb.edu.cn ; Wang Shou-Guo, zhangy@iphy.ac.cn;sgwang@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51625101, 51431009, 51471183, 11674373), the State Key Development Program for Basic Research of China (Grant Nos. 2015CB921401, 2016YFB0700902), the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-16-001C2), and Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2015004).
    [1]

    Moore G E 1965 Electronics 38 114

    [2]

    Baibich M N, Broto J M, Fert A, Nguyen van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [3]

    Binasch G, Grnberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231

    [5]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273

    [6]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [7]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778

    [8]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [9]

    Zhang S L, Liu Y, Collins-McIntyre L J, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087

    [10]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [11]

    Wang S G, Kohn A, Wang C, Petford-Long A K, Lee S, Fan R, Goff J P, Singh L J, Barber Z H, Ward R C C 2009 J. Phys. D: Appl. Phys. 42 225001

    [12]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 物理学报 64 067503]

    [13]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [14]

    Kugler M, Shtrikman S 1988 Phys. Lett. B 208 491

    [15]

    Klebanov I 1985 Nucl. Phys. B 262 133

    [16]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419

    [17]

    Schtte C 2014 Ph. D. Dissertation (Kln: Univ. of Kln)

    [18]

    Everschor K 2012 Ph. D. Dissertation (Kln: Univ. of Kln)

    [19]

    Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Cham: Springer International Publishing)

    [20]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [21]

    Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2016 Nat. Phys. 13 162

    [22]

    Litzius K, Lemesh I, Krger B, Bassirian P, Caretta L, Richter K, Bttner F, Sato K, Tretiakov O A, Frster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schtz G, Beach G S D, Klui M 2016 Nat. Phys. 13 170

    [23]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [24]

    Bogdanov A N, Rler U K 2001 Phys. Rev. Lett. 87 037203

    [25]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [26]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [27]

    Uchida M, Onose Y, Matsui Y, Tokura Y 2006 Science 311 359

    [28]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Munzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [29]

    Ishikawa Y, Tajima K, Bloch D, Roth M 1976 Solid State Commun. 19 525

    [30]

    Li Y, Kanazawa N, Yu X, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202

    [31]

    Grigoriev S V, Dyadkin V A, Moskvin E V, Lamago D, Wolf T, Eckerlebe H, Maleyev S V 2009 Phys. Rev. B 79 144417

    [32]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [33]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [34]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotech. 8 723

    [35]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [36]

    Kzsmrki I, Bordcs S, Milde P, Neuber E, Eng L M, White J S, Rnnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015 Nat. Mater. 14 1116

    [37]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [38]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E k, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [39]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [40]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [41]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [42]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [43]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [44]

    Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704

    [45]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [46]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [47]

    Moreau Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotech. 11 444

    [48]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigne Y, Stashkevich A, Cherif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [49]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [50]

    Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [51]

    Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401

    [52]

    Du H F, Che R C, Kong L Y, Zhao X B, Jin C M, Wang C, Yang J Y, Ning W, Li R W, Jin C Q, Chen X H, Zang J D, Zhang Y H, Tian M L 2015 Nat. Commun. 6 8504

    [53]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [54]

    Dai Y Y, Wang H, Yang T, Ren W J, Zhang Z D 2014 Sci. Rep. 4 06153

    [55]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [56]

    Zhang X C, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [57]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [58]

    Ding B, Wang W H 2017 Physics 47 15 (in Chinese) [丁贝, 王文洪 2017 物理 47 15]

    [59]

    Peng L C, Zhang Y, Zuo S L, He M, Cai J W, Wang S G, Wei H X, Li J Q, Zhao T Y, Shen B G 2018 Chin. Phys. B 27 056801

    [60]

    Binnig G, Rohrer H 1987 Rev. Mod. Phys. 59 615

    [61]

    Wiesendanger R, Gntherodt H J, Gntherodt G, Gambino R J, Ruf R 1990 Phys. Rev. Lett. 65 247

    [62]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A T, Huo Y, Ma T P, Chen Y, Kwon H Y, Won C, Qiu Z Q, Schmid A K, Wu Y Z 2013 Phys. Rev. Lett. 110 177204

    [63]

    Jiang W J, Chen G, Liu K, Zang J D, te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1

    [64]

    Kuch W, Chelaru L I, Offi F, Wang J, Kotsugi M, Kirschner J 2006 Nat. Mater. 5 128

    [65]

    Cao N, Fu Q, Bao X H 2012 Bull. Chin. Acad. Sci. 27 103 (in Chinese) [曹凝, 傅强, 包信和 2012 中国科学院院刊 27 103]

    [66]

    Peng L C, Zhang Y, He M, Ding B, Wang W H, Tian H F, Li J, Wang S G, Cai J W, Wu G H, Liu J P, Kramer M J, Shen B G 2017 npj Quantum Mater. 2 30

    [67]

    Peng L C, Zhang Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075

    [68]

    Peng L C, Zhang Y, He M, Ding B, Wang W H, Li J Q, Cai J W, Wang S G, Wu G H, Shen B G 2018 J. Phys.: Condens. Matter 30 065803

    [69]

    He M, Li G, Zhu Z Z, Zhang Y, Peng L C, Li R, Li J Q, Wei H X, Zhao T Y, Zhang X G, Wang S G, Lin S Z, Gu L, Yu G Q, Cai J W, Shen B G 2018 Phys. Rev. B 97 174419

    [70]

    He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G, Zhang Y 2017 Appl. Phys. Lett. 111 202403

    [71]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [72]

    Wiesendanger R 2016 Nat. Rev. Mater. 1 16044

    [73]

    Kang W, Huang Y Q, Zhang X C, Zhou Y, Zhao W S 2016 Proc. IEEE 104 2040

    [74]

    Finocchio G, Bttner F, Tomasello R, Carpentieri M, Klui M 2016 J. Phys. D: Appl. Phys. 49 423001

  • [1]

    Moore G E 1965 Electronics 38 114

    [2]

    Baibich M N, Broto J M, Fert A, Nguyen van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [3]

    Binasch G, Grnberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231

    [5]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273

    [6]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [7]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778

    [8]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [9]

    Zhang S L, Liu Y, Collins-McIntyre L J, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087

    [10]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [11]

    Wang S G, Kohn A, Wang C, Petford-Long A K, Lee S, Fan R, Goff J P, Singh L J, Barber Z H, Ward R C C 2009 J. Phys. D: Appl. Phys. 42 225001

    [12]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 物理学报 64 067503]

    [13]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [14]

    Kugler M, Shtrikman S 1988 Phys. Lett. B 208 491

    [15]

    Klebanov I 1985 Nucl. Phys. B 262 133

    [16]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419

    [17]

    Schtte C 2014 Ph. D. Dissertation (Kln: Univ. of Kln)

    [18]

    Everschor K 2012 Ph. D. Dissertation (Kln: Univ. of Kln)

    [19]

    Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Cham: Springer International Publishing)

    [20]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [21]

    Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2016 Nat. Phys. 13 162

    [22]

    Litzius K, Lemesh I, Krger B, Bassirian P, Caretta L, Richter K, Bttner F, Sato K, Tretiakov O A, Frster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schtz G, Beach G S D, Klui M 2016 Nat. Phys. 13 170

    [23]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [24]

    Bogdanov A N, Rler U K 2001 Phys. Rev. Lett. 87 037203

    [25]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [26]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [27]

    Uchida M, Onose Y, Matsui Y, Tokura Y 2006 Science 311 359

    [28]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Munzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [29]

    Ishikawa Y, Tajima K, Bloch D, Roth M 1976 Solid State Commun. 19 525

    [30]

    Li Y, Kanazawa N, Yu X, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202

    [31]

    Grigoriev S V, Dyadkin V A, Moskvin E V, Lamago D, Wolf T, Eckerlebe H, Maleyev S V 2009 Phys. Rev. B 79 144417

    [32]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [33]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [34]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotech. 8 723

    [35]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [36]

    Kzsmrki I, Bordcs S, Milde P, Neuber E, Eng L M, White J S, Rnnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015 Nat. Mater. 14 1116

    [37]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [38]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E k, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [39]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [40]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [41]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [42]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [43]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [44]

    Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704

    [45]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [46]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [47]

    Moreau Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotech. 11 444

    [48]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigne Y, Stashkevich A, Cherif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [49]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [50]

    Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [51]

    Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401

    [52]

    Du H F, Che R C, Kong L Y, Zhao X B, Jin C M, Wang C, Yang J Y, Ning W, Li R W, Jin C Q, Chen X H, Zang J D, Zhang Y H, Tian M L 2015 Nat. Commun. 6 8504

    [53]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [54]

    Dai Y Y, Wang H, Yang T, Ren W J, Zhang Z D 2014 Sci. Rep. 4 06153

    [55]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [56]

    Zhang X C, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [57]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [58]

    Ding B, Wang W H 2017 Physics 47 15 (in Chinese) [丁贝, 王文洪 2017 物理 47 15]

    [59]

    Peng L C, Zhang Y, Zuo S L, He M, Cai J W, Wang S G, Wei H X, Li J Q, Zhao T Y, Shen B G 2018 Chin. Phys. B 27 056801

    [60]

    Binnig G, Rohrer H 1987 Rev. Mod. Phys. 59 615

    [61]

    Wiesendanger R, Gntherodt H J, Gntherodt G, Gambino R J, Ruf R 1990 Phys. Rev. Lett. 65 247

    [62]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A T, Huo Y, Ma T P, Chen Y, Kwon H Y, Won C, Qiu Z Q, Schmid A K, Wu Y Z 2013 Phys. Rev. Lett. 110 177204

    [63]

    Jiang W J, Chen G, Liu K, Zang J D, te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1

    [64]

    Kuch W, Chelaru L I, Offi F, Wang J, Kotsugi M, Kirschner J 2006 Nat. Mater. 5 128

    [65]

    Cao N, Fu Q, Bao X H 2012 Bull. Chin. Acad. Sci. 27 103 (in Chinese) [曹凝, 傅强, 包信和 2012 中国科学院院刊 27 103]

    [66]

    Peng L C, Zhang Y, He M, Ding B, Wang W H, Tian H F, Li J, Wang S G, Cai J W, Wu G H, Liu J P, Kramer M J, Shen B G 2017 npj Quantum Mater. 2 30

    [67]

    Peng L C, Zhang Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075

    [68]

    Peng L C, Zhang Y, He M, Ding B, Wang W H, Li J Q, Cai J W, Wang S G, Wu G H, Shen B G 2018 J. Phys.: Condens. Matter 30 065803

    [69]

    He M, Li G, Zhu Z Z, Zhang Y, Peng L C, Li R, Li J Q, Wei H X, Zhao T Y, Zhang X G, Wang S G, Lin S Z, Gu L, Yu G Q, Cai J W, Shen B G 2018 Phys. Rev. B 97 174419

    [70]

    He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G, Zhang Y 2017 Appl. Phys. Lett. 111 202403

    [71]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [72]

    Wiesendanger R 2016 Nat. Rev. Mater. 1 16044

    [73]

    Kang W, Huang Y Q, Zhang X C, Zhou Y, Zhao W S 2016 Proc. IEEE 104 2040

    [74]

    Finocchio G, Bttner F, Tomasello R, Carpentieri M, Klui M 2016 J. Phys. D: Appl. Phys. 49 423001

  • [1] 史猛, 王伟伟, 杜海峰. 基于符号回归方法探索磁性斯格明子结构近似解析式. 物理学报, 2024, 73(1): 011201. doi: 10.7498/aps.73.20231473
    [2] 张建强, 秦彦军, 方峥, 范晓珍, 马云, 李文忠, 杨慧雅, 邝富丽, 翟耀, 师应龙, 党文强, 叶慧群, 方允樟. 多场耦合Fe基合金巨磁阻抗效应调控机制. 物理学报, 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [3] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [4] 周大方, 蒋式勤, 赵晨, Petervan Leeuwen. P波间期的心脏电流源重建及电活动磁成像. 物理学报, 2019, 68(13): 138701. doi: 10.7498/aps.68.20190005
    [5] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究. 物理学报, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [6] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [7] 李子安, 柴可, 张明, 朱春辉, 田焕芳, 杨槐馨. 纳米结构中磁斯格明子的原位电子全息研究. 物理学报, 2018, 67(13): 131203. doi: 10.7498/aps.67.20180426
    [8] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 物理学报, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [9] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算. 物理学报, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [10] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [11] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理. 物理学报, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [12] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [13] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [14] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动. 物理学报, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [15] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [16] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应. 物理学报, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [17] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [18] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为. 物理学报, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [19] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [20] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构. 物理学报, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
计量
  • 文章访问数:  8642
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-09
  • 修回日期:  2018-05-22
  • 刊出日期:  2018-07-05

/

返回文章
返回