搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大孔径空间外差干涉光谱成像技术多谱段成像仿真

才啟胜 黄旻 韩炜 刘怡轩 路向宁

引用本文:
Citation:

大孔径空间外差干涉光谱成像技术多谱段成像仿真

才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁

Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy

Cai Qi-Sheng, Huang Min, Han Wei, Liu Yi-Xuan, Lu Xiang-Ning
PDF
导出引用
  • 在大孔径空间外差干涉光谱成像技术(LASHIS)的基础上提出了一种多谱段成像方案.其采用LASHIS的外差探测原理,一方面,可通过较少的采样点数实现很高的光谱分辨率,保留了LASHIS的高光谱分辨率、高稳定性和高探测灵敏度的特点;另一方面,利用光栅的多级衍射性质,实现同一系统的多谱段同时探测,拓宽了光谱探测范围.首先,阐述了LASHIS多谱段成像方案的基本原理;然后,分析了多谱段探测与谱段解混方式;最后,对该方案进行了计算机仿真模拟,通过ZEMAX光线追迹的干涉图结果与理论计算结果相符合,验证了方案的正确性.基于LASHIS的多谱段成像方案所具有的高光谱分辨率、高探测灵敏度以及可实现同一系统的多谱段同时探测特点,尤其适合温室气体等高稳定性、高探测灵敏度的多谱段高光谱探测应用.
    A multiband imaging technology based on large aperture spatial heterodyne imaging spectroscopy (LASHIS) is proposed in this paper. It retains the advantages of high spectral resolution, high stability and high detection sensitivity of LASHIS. In addition, by using the multistage diffraction gratings, several spectral bands can be detected simultaneously in this system, thus the spectral range is broadened. The basic principle of this multiband imaging technology based on LASHIS is described. The difference between optical path differences produced by the Sagnac lateral shearing interferometer and the parallel gratings is calculated. The mathematical expressions, the interferogram calculation procedures, and the spectrum reconstruction method are presented. As a pair of multistage diffraction gratings is introduced into the Sagnac interferometer, the rays of different diffraction orders corresponding to different spectral bands are mixed together in the interferometer. The spectral bands should be separated before they are imaged on the detector. Two separation methods are proposed:introducing a filter array in front of the detector and introducing dichroic mirrors to assign different spectral bands to different detectors. Finally, a design example is given and an optical model is setup in ZEMAX. In this example, a pair of parallel echelon gratings with 316 lines/mm is introduced into the Sagnac interferometer. Two dichroic mirrors and three detectors are used to separate and detect three spectral bands simultaneously. The three spectral ranges are from 529.2 nm to 532.96 nm, from 588 nm to 592.18 nm, and from 661.5 nm to 666.20 nm. The average spectral resolutions are 0.015 nm, 0.016 nm, and 0.018 nm respectively. Two kinds of sources are analyzed:one is a sodium lamp with two emission peaks at 589 nm and 589.6 nm, and the other is a source with three monochromatic wavelengths at 530 nm, 589 nm, and 662 nm. The interferograms of these two sources traced in the optical model are consistent with the theoretical results. The recovered spectra show good agreement with the input spectra. These verified the correctness of the principle and the spectrum reconstruction method. The multiband imaging technology based on LASHIS with the advantages of high spectral resolution, high detection sensitivity, and multiband detection capability, is especially suitable for multiband hyperspectral highstability and high-sensitivity detection, such as the detection of greenhouse gases.
    • 基金项目: 国家重点研发计划(批准号:2016YFC0201100)和中国科学院光电研究院创新项目(批准号:Y70B02A11Y)资助的课题.
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0201100) and the Innovation Program of Academy of Opto-Electronics, Chinese Academy of Sciences (Grant No. Y70B02A11Y).
    [1]

    Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234

    [2]

    Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343

    [3]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [4]

    Englert C R, Babcock D D, Harlander J M 2009 Opt. Eng. 48 105602

    [5]

    Harlander J M, Englert C R, Babcock D D, Roesler F L 2010 Opt. Express 18 26430

    [6]

    Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148

    [7]

    Cai Q S, Xiang L B, Huang M, Han W, Pei L L, Bu M X 2018 Opt. Commun. 410 403

    [8]

    Kuze A, Urabe T, Suto H, Kaneko Y, Hamazaki T 2006 Proc. SPIE 6297 62970K

    [9]

    Kuze A, Suto H, Nakajima M, Hamazaki T 2009 Appl. Opt. 48 6716

    [10]

    Basilio R R, Pollock H R, Hunyadi-Lay S L 2014 Proc. SPIE 9241 924105

    [11]

    Crisp D 2015 Proc. SPIE 9607 960702

    [12]

    Zhang H, Lin C, Zheng Y, Wang W, Tian L, Liu D, Li S 2016 J. Appl. Remote Sens. 10 024003

  • [1]

    Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234

    [2]

    Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343

    [3]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [4]

    Englert C R, Babcock D D, Harlander J M 2009 Opt. Eng. 48 105602

    [5]

    Harlander J M, Englert C R, Babcock D D, Roesler F L 2010 Opt. Express 18 26430

    [6]

    Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148

    [7]

    Cai Q S, Xiang L B, Huang M, Han W, Pei L L, Bu M X 2018 Opt. Commun. 410 403

    [8]

    Kuze A, Urabe T, Suto H, Kaneko Y, Hamazaki T 2006 Proc. SPIE 6297 62970K

    [9]

    Kuze A, Suto H, Nakajima M, Hamazaki T 2009 Appl. Opt. 48 6716

    [10]

    Basilio R R, Pollock H R, Hunyadi-Lay S L 2014 Proc. SPIE 9241 924105

    [11]

    Crisp D 2015 Proc. SPIE 9607 960702

    [12]

    Zhang H, Lin C, Zheng Y, Wang W, Tian L, Liu D, Li S 2016 J. Appl. Remote Sens. 10 024003

  • [1] 彭翔, 刘恩海, 田书林, 方亮. 基于多普勒非对称空间外差光谱测速的复合光程差相移解算方法. 物理学报, 2022, 71(24): 240601. doi: 10.7498/aps.71.20221469
    [2] 臧益鹏, 许振宇, 黄安, 艾苏曼, 夏晖晖, 阚瑞峰. 基于改进模拟退火算法的非均匀燃烧场分布重建. 物理学报, 2021, 70(13): 134205. doi: 10.7498/aps.70.20202124
    [3] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [4] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析. 物理学报, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [5] 况银丽, 方亮, 彭翔, 程欣, 张辉, 刘恩海. 基于多普勒非对称空间外差光谱技术的多普勒测速仿真. 物理学报, 2018, 67(14): 140703. doi: 10.7498/aps.67.20180063
    [6] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [7] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [8] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [9] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [10] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [11] 陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究. 物理学报, 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [12] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [13] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [14] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构. 物理学报, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [15] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [16] 吕金光, 梁静秋, 梁中翥. 窄带傅里叶变换光谱仪中平稳高斯噪声的理论分析. 物理学报, 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [17] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [18] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [19] 胡水明, 何圣贵, 林 海, 程继新, 王湘淮, 郑晶晶, 成国胜, 朱清时. 高分辨傅里叶变换激光腔内吸收光谱方法:原理和应用. 物理学报, 2000, 49(8): 1435-1440. doi: 10.7498/aps.49.1435
    [20] 半导体中浅杂质的傅里叶变换光热电离光谱. 物理学报, 1989, 38(11): 1869-1873. doi: 10.7498/aps.38.1869
计量
  • 文章访问数:  6695
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-12
  • 修回日期:  2018-08-15
  • 刊出日期:  2018-12-05

/

返回文章
返回