搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透过散射介质对直线运动目标的全光成像及追踪技术

贾辉 罗秀娟 张羽 兰富洋 刘辉 陈明徕

引用本文:
Citation:

透过散射介质对直线运动目标的全光成像及追踪技术

贾辉, 罗秀娟, 张羽, 兰富洋, 刘辉, 陈明徕

All-optical imaging and tracking technology for rectilinear motion targets through scattering media

Jia Hui, Luo Xiu-Juan, Zhang Yu, Lan Fu-Yang, Liu Hui, Chen Ming-Lai
PDF
导出引用
  • 光散射是限制光传输以及降低和破坏光学成像性能的主要因素,透过复杂散射介质对运动目标的全光成像是光学领域极具挑战性的技术之一.本文提出一种利用散斑差值自相关透过散射介质对运动目标进行实时追踪的方法.采用赝热光照明,基于光学记忆效应理论,通过对运动目标采集的两帧散斑做差值,然后做自相关运算,计算目标移动的距离,实现对目标的实时追踪,并且利用相位恢复算法进行简单处理就可以重建隐藏目标.对该方法进行了实验验证,成功地对隐藏的运动目标实现了成像与追踪.这种透过散射介质对运动目标的全光成像及实时追踪技术,在生物医学等领域具有重要应用潜力.
    Light scattering is a main factor that restricts optical transmission and deteriorates optical imaging performance. All-optical imaging for moving targets through complex scattering media is one of the most challenging techniques. In this paper, a method for real-time tracking of moving targets through scattering medium is presented by utilizing optical memory-effect and autocorrelation of speckle difference. In the experiment on imaging through a scattering medium, an object is hidden at a distance u behind a highly scattering medium. The object is illuminated by a spatially incoherent pseudothermal light source. The light is diffused through the scattering medium. Camera placed at a distance u0 on the other side of the medium records the pattern of the scattered light. According to the theory of optical memory-effect, the process of scattering imaging is a convolution process of point spread function (PSF) and object. In the procedure of object moving, the scattered signals from two frames are captured. The background noise could be removed by subtracting the two captured image. Then, the autocorrelation operation calculates the speckle difference, and hidden targets can be effectively reconstructed with the phase retrieval algorithm. The experiment demonstrates the imaging of targets with different speeds. The results have shown that the faster the speed, the worse the imaging quality is. High-speed moving objects can be imaged by using a high frame rate camera to reduce the exposure time or by disambiguating the speckle pattern. In subsequent experiments, the distance of the target movement is calculated with the magnification of the system. The collected two frames of speckle must be within the same memory effect angle. Only in this way can the calculation accuracy of the motion distance be guaranteed. With the moving of the target, the cross-correlation information of the target appears at different positions of the speckle difference autocorrelation map. Finally, according to the cross-correlation of the target at different locations, the real-time tracking of the moving target can be realized. Due to the Gaussian distribution of the laser beam, the cross-correlation intensity of the speckle difference autocorrelation map decreases with the object moving further. Therefore the target moving range is limited by the laser beam diameter, intensity distribution and camera field angle. It is verified experimentally that the imaging and tracking of moving targets which are hidden behind the ground glass can be achieved successfully by using this method. This kind of imaging and real-time tracking technology for targets moving through the scattering medium has important potential applications in biomedicine and other fields.
      通信作者: 罗秀娟, xj_luo@opt.ac.cn
      Corresponding author: Luo Xiu-Juan, xj_luo@opt.ac.cn
    [1]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232

    [2]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nature Photon. 8 784

    [3]

    Yang X, Pu Y, Psaltis D 2014 Opt. Express 22 3405

    [4]

    Katz O, Small E, Silberberg Y 2012 Nature Photon. 6 549

    [5]

    Wu T F, Katz O, Shao X P, Sylvain G 2016 Opt. Lett. 41 5003

    [6]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nature Photon. 2 110

    [7]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nature Photon. 4 320

    [8]

    Hsieh C L, Pu Y, Grange R, Laporte G, Psaltis D 2010 Opt. Express 18 20723

    [9]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [10]

    Popoff S M, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81

    [11]

    Choi Y, Yang T D, Fang-Yen C, Kang P, Lee K J, Dasari R R, Feld M S, Choi W 2011 Phys. Rev. Lett. 107 023902

    [12]

    Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nature Photon. 6 283

    [13]

    Freund I, Rosenbluh M, Feng S 1988 Phys. Rev. Lett. 61 2328

    [14]

    Apostol A, Dogariu A 2003 Phys. Rev. Lett. 91 9105

    [15]

    Cua M, Zhou E H, Yang C 2017 Opt. Express 25 3935

    [16]

    Schott S, Bertolotti J, Leger J F, Bourdieu L, Gigan S 2015 Opt. Express 23 13505

    [17]

    Labeyrie A 1986 J. Opt. Soc. Am. A 3 1897

    [18]

    Fienup J R, Wackerman C C 1986 J. Opt. Soc. Am. A 3 1897

    [19]

    Idell P S, Fienup J R 1987 Opt. Lett. 12 858

    [20]

    Ma C, Xu X, Liu Y, Wang L V 2014 Nature Photon. 8 931

    [21]

    Liang Z, An X Y, Zhang R, Song L P, Zhu S H, Wu P F 2017 Acta Opt. Sin. 37 0811002 (in Chinese) [梁子, 安晓英, 张茹, 宋丽培, 朱松河, 武鹏飞 2017 光学学报 37 0811002]

  • [1]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232

    [2]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nature Photon. 8 784

    [3]

    Yang X, Pu Y, Psaltis D 2014 Opt. Express 22 3405

    [4]

    Katz O, Small E, Silberberg Y 2012 Nature Photon. 6 549

    [5]

    Wu T F, Katz O, Shao X P, Sylvain G 2016 Opt. Lett. 41 5003

    [6]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nature Photon. 2 110

    [7]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nature Photon. 4 320

    [8]

    Hsieh C L, Pu Y, Grange R, Laporte G, Psaltis D 2010 Opt. Express 18 20723

    [9]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [10]

    Popoff S M, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81

    [11]

    Choi Y, Yang T D, Fang-Yen C, Kang P, Lee K J, Dasari R R, Feld M S, Choi W 2011 Phys. Rev. Lett. 107 023902

    [12]

    Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nature Photon. 6 283

    [13]

    Freund I, Rosenbluh M, Feng S 1988 Phys. Rev. Lett. 61 2328

    [14]

    Apostol A, Dogariu A 2003 Phys. Rev. Lett. 91 9105

    [15]

    Cua M, Zhou E H, Yang C 2017 Opt. Express 25 3935

    [16]

    Schott S, Bertolotti J, Leger J F, Bourdieu L, Gigan S 2015 Opt. Express 23 13505

    [17]

    Labeyrie A 1986 J. Opt. Soc. Am. A 3 1897

    [18]

    Fienup J R, Wackerman C C 1986 J. Opt. Soc. Am. A 3 1897

    [19]

    Idell P S, Fienup J R 1987 Opt. Lett. 12 858

    [20]

    Ma C, Xu X, Liu Y, Wang L V 2014 Nature Photon. 8 931

    [21]

    Liang Z, An X Y, Zhang R, Song L P, Zhu S H, Wu P F 2017 Acta Opt. Sin. 37 0811002 (in Chinese) [梁子, 安晓英, 张茹, 宋丽培, 朱松河, 武鹏飞 2017 光学学报 37 0811002]

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] 许明伟, 杜康, 李可, 王飞翔, 肖体乔. 时变复杂背景自由运动目标的高灵敏追迹成像. 物理学报, 2023, 72(15): 150701. doi: 10.7498/aps.72.20230360
    [3] 侯阿慧, 胡以华, 方佳节, 赵楠翔, 徐世龙. 平动小目标光子探测回波特性及测距误差研究. 物理学报, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [4] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [5] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像. 物理学报, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [6] 徐艳, 王培光, 杨青, 董江涛. 时空相关多通道聚类的运动目标检测. 物理学报, 2019, 68(16): 164203. doi: 10.7498/aps.68.20190161
    [7] 郭力仁, 胡以华, 董骁, 李敏乐. 运动目标激光微多普勒效应平动补偿和微动参数估计. 物理学报, 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [8] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像. 物理学报, 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [9] 张同伟, 杨坤德, 马远良, 汪勇. 一种基于单水听器宽带信号自相关函数的水下目标定位稳健方法. 物理学报, 2015, 64(2): 024303. doi: 10.7498/aps.64.024303
    [10] 侯旺, 于起峰, 雷志辉, 刘晓春. 基于分块速度域改进迭代运动目标检测算法的红外弱小目标检测. 物理学报, 2014, 63(7): 074208. doi: 10.7498/aps.63.074208
    [11] 阳志强, 吴振森, 张耿, 巩蕾. 旋转粗糙目标微运动特征识别技术. 物理学报, 2014, 63(21): 210301. doi: 10.7498/aps.63.210301
    [12] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [13] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计. 物理学报, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [14] 刘曼, 程传福, 宋洪胜, 滕树云, 刘桂媛. 高斯相关随机表面光散射散斑场相位奇异及其特性的理论研究. 物理学报, 2009, 58(8): 5376-5384. doi: 10.7498/aps.58.5376
    [15] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究. 物理学报, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [16] 朱鸿茂, 郑伟花, 黄忠文, 朱 成. 运动界面上反射超声散斑空间运动的研究. 物理学报, 2004, 53(8): 2614-2620. doi: 10.7498/aps.53.2614
    [17] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究. 物理学报, 2001, 50(10): 1914-1919. doi: 10.7498/aps.50.1914
    [18] 程传福, 亓东平, 刘德丽, 滕树云. 高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析. 物理学报, 1999, 48(9): 1635-1643. doi: 10.7498/aps.48.1635
    [19] 伍小平, 何世平, 李志超. 空间散斑的运动规律(续)——物表面位移微分量的影响. 物理学报, 1983, 32(8): 973-981. doi: 10.7498/aps.32.973
    [20] 伍小平, 何世平, 李志超. 空间散斑的运动规律. 物理学报, 1980, 29(9): 1142-1150. doi: 10.7498/aps.29.1142
计量
  • 文章访问数:  6179
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-09-12
  • 刊出日期:  2019-11-20

/

返回文章
返回