搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋湍流中光波特征参量和短期光束扩展的研究

吴彤 季小玲 李晓庆 王欢 邓宇 丁洲林

引用本文:
Citation:

海洋湍流中光波特征参量和短期光束扩展的研究

吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林

Characteristic parameters of optical wave and short-term beam spreading in oceanic turbulence

Wu Tong, Ji Xiao-Ling, Li Xiao-Qing, Wang Huan, Deng Yu, Ding Zhou-Lin
PDF
导出引用
  • Nikishov等建立的海洋湍流功率谱模型中,假设了海水有着稳定的分层.但是,实际海水通常不是稳定分层的,温度与盐度的涡流扩散率是不相等的.2017年,Elamassie等建立了考虑这些因素的更合理的海洋湍流功率谱模型.湍流介质中光波空间相干长度等基本特征参量在表征湍流强度和光传输相位校正技术等方面起着重要作用.本文基于Elamassie海洋湍流功率谱模型,重新推导出了海洋湍流中光波结构函数、光波空间相干长度和Fried参数的解析公式,并校验了所得公式的正确性.研究发现:当温度变化引起的光学湍流占主导地位时,Nikishov海洋湍流功率谱模型把湍流强度低估了;当盐度变化引起的光学湍流占主导地位时,Nikishov海洋湍流功率谱模型把湍流强度高估了.基于Elamassie海洋湍流功率谱模型,本文推导出了高斯光束短期光束扩展的半解析公式,并验证了其正确性.研究还表明:海水稳定分层与否,短期光束扩展差异很大.本文研究结果对水下湍流环境中的光通信、成像和传感等应用具有重要意义.
    In 2000, Nikishov et al. presented an analytical model for the power spectrum of oceanic turbulence, in which the stable stratification of seawater is assumed, i.e., the eddy diffusivity of temperature is equal to that of salinity, and the eddy diffusivity ratio is equal to unity. Until now, all previous studies on the light propagation through oceanic turbulence were based on the Nikishov's power spectrum model. However, the eddy diffusivity of temperature and eddy diffusivity of salt are different from each other in most of underwater environments. Very recently, Elamassie et al. established a more reasonable power spectrum model of underwater turbulent fluctuations as an explicit function of eddy diffusivity ratio. The characteristic parameters such as the spatial coherence length of optical wave in turbulent medium play an important role in characterizing the strength of turbulence, the phase correction techniques in light propagation, etc. In the present paper, based on the Elamassie's power spectrum model of oceanic turbulence, the analytical formulae of the wave structure function, the spatial coherence length of optical wave and the Fried parameter in oceanic turbulence are derived, and the correctness of each of these formulae is verified. It is shown numerically that the results obtained by using the Elamassie's power spectrum model are quite different from those obtained by using the Nikishov's power spectrum model. If the Nikishov's power spectrum model is adopted, the strength of turbulence is underestimated when oceanic turbulence is dominated by the temperature fluctuations, while the strength of turbulence is overestimated when oceanic turbulence is dominated by the salinity fluctuations. If the Elamassie's power spectrum model is adopted, it is shown that the Kolmogorov five-thirds power law of the wave structure function is also valid for oceanic turbulence in the inertial range, and 2.1 times the spatial coherence length of optical wave is the Fried parameter, which are in agreement with those in atmospheric turbulence. In addition, based on the Elamassie's power spectrum model, the semi-analytical formula of the short-term beam spreading of Gaussian beams is derived in this paper, and its correctness is also verified. It is shown that the difference in short-term beam spreading is very large, whether the stable stratification of seawater is assumed or not. The results obtained in this paper are very useful for applications in optical communication, imaging and sensing systems involving turbulent underwater channels.
      通信作者: 季小玲, jiXL100@163.com
    • 基金项目: 国家自然科学基金(批准号:61475105,61775152,61505130)资助的课题.
      Corresponding author: Ji Xiao-Ling, jiXL100@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475105, 61775152, 61505130).
    [1]

    Andrews L C, Phillips R L 2012 Appl. Phys. 51 2678

    [2]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) pp368–411 (in Chinese) [饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第 368–411 页]

    [3]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [4]

    Lu L, Ji X L, Baykal Y 2014 Opt. Express 22 027112

    [5]

    Pu H, Ji X L 2016 J. Opt. 18 105704

    [6]

    Hou W L 2009 Opt. Lett. 34 2688

    [7]

    Hou W L, Woods S, Jarosz E, Goode W, Weidemann A 2012 Appl. Phys. 51 2678

    [8]

    Hou W L, Jarosz E, Woods S, Goode W, Weidemann A 2013 Opt. Express 21 4367

    [9]

    Gökçe M C, Baykal Y 2018 Opt. Commun. 410 830

    [10]

    Baykal Y 2016 Appl. Opt. 55 1228

    [11]

    Gökçe M C, Baykal Y 2018 Opt. Commun. 413 196

    [12]

    Baykal Y 2016 Opt. Commun. 375 15

    [13]

    Korotkova O, Farwell N, Shchepakina E 2012 Waves in Random and Complex Media 22 260

    [14]

    Yang T, Ji X L, Li X Q 2015 Acta Phys. Sin. 64 204206 (in Chinese) [杨婷, 季小玲, 李晓庆 2015 物理学报 64 204206]

    [15]

    Liu Y X, Chen Z Y, Pu J X 2017 Acta Phys. Sin. 66 124205 (in Chinese) [刘永欣, 陈子阳, 蒲继雄 2017 物理学报 66 124205]

    [16]

    Wu T, Ji X L, Luo Y J 2018 Acta Phys. Sin. 67 054206 (in Chinese) [吴彤, 季小玲, 罗燏娟 2018 物理学报 67 054206]

    [17]

    Elamassie M, Uysal M, Baykal Y, Abdallah M, Qaraqe K 2017 J. Opt. Soc. Am. A 34 1969

    [18]

    Cui L Y, Cao L 2015 Optik 126 4704

    [19]

    Lu L, Wang Z Q, Zhang P F, Zhang J H, Ji X L, Fan C Y, Qiao C H 2016 Optik 127 5341

    [20]

    Yang Y Q, Yu L, Wang Q, Zhang Y X 2017 Appl. Opt. 56 7046

    [21]

    Jackson P R, Rehmann C R 2003 J. Phys. Oceanogr. 33 1592

    [22]

    Lu W, Liu L R, Sun J F 2006 J. Opt. A: Pure Appl. Opt. 8 1052

    [23]

    Fried D L 1966 J. Opt. Soc. Am. 56 1372

    [24]

    Yura H T 1973 J. Opt. Soc. Am. 63 567

    [25]

    Andrews L C, Phillips R L, Sasiela R J, Parenti R 2005 Proc. SPIE 5793 28

  • [1]

    Andrews L C, Phillips R L 2012 Appl. Phys. 51 2678

    [2]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) pp368–411 (in Chinese) [饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第 368–411 页]

    [3]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [4]

    Lu L, Ji X L, Baykal Y 2014 Opt. Express 22 027112

    [5]

    Pu H, Ji X L 2016 J. Opt. 18 105704

    [6]

    Hou W L 2009 Opt. Lett. 34 2688

    [7]

    Hou W L, Woods S, Jarosz E, Goode W, Weidemann A 2012 Appl. Phys. 51 2678

    [8]

    Hou W L, Jarosz E, Woods S, Goode W, Weidemann A 2013 Opt. Express 21 4367

    [9]

    Gökçe M C, Baykal Y 2018 Opt. Commun. 410 830

    [10]

    Baykal Y 2016 Appl. Opt. 55 1228

    [11]

    Gökçe M C, Baykal Y 2018 Opt. Commun. 413 196

    [12]

    Baykal Y 2016 Opt. Commun. 375 15

    [13]

    Korotkova O, Farwell N, Shchepakina E 2012 Waves in Random and Complex Media 22 260

    [14]

    Yang T, Ji X L, Li X Q 2015 Acta Phys. Sin. 64 204206 (in Chinese) [杨婷, 季小玲, 李晓庆 2015 物理学报 64 204206]

    [15]

    Liu Y X, Chen Z Y, Pu J X 2017 Acta Phys. Sin. 66 124205 (in Chinese) [刘永欣, 陈子阳, 蒲继雄 2017 物理学报 66 124205]

    [16]

    Wu T, Ji X L, Luo Y J 2018 Acta Phys. Sin. 67 054206 (in Chinese) [吴彤, 季小玲, 罗燏娟 2018 物理学报 67 054206]

    [17]

    Elamassie M, Uysal M, Baykal Y, Abdallah M, Qaraqe K 2017 J. Opt. Soc. Am. A 34 1969

    [18]

    Cui L Y, Cao L 2015 Optik 126 4704

    [19]

    Lu L, Wang Z Q, Zhang P F, Zhang J H, Ji X L, Fan C Y, Qiao C H 2016 Optik 127 5341

    [20]

    Yang Y Q, Yu L, Wang Q, Zhang Y X 2017 Appl. Opt. 56 7046

    [21]

    Jackson P R, Rehmann C R 2003 J. Phys. Oceanogr. 33 1592

    [22]

    Lu W, Liu L R, Sun J F 2006 J. Opt. A: Pure Appl. Opt. 8 1052

    [23]

    Fried D L 1966 J. Opt. Soc. Am. 56 1372

    [24]

    Yura H T 1973 J. Opt. Soc. Am. 63 567

    [25]

    Andrews L C, Phillips R L, Sasiela R J, Parenti R 2005 Proc. SPIE 5793 28

  • [1] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [2] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [3] 吴彤, 季小玲, 罗燏娟. 海洋湍流中自适应光学成像系统特征参量研究. 物理学报, 2018, 67(5): 054206. doi: 10.7498/aps.67.20171851
    [4] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [5] 朱洁, 唐慧琴, 李晓利, 刘小钦. 具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生. 物理学报, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [6] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [7] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [8] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性. 物理学报, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [9] 陆璐, 季小玲, 邓金平, 马媛. 非Kolmogorov大气湍流对高斯列阵光束扩展的影响. 物理学报, 2014, 63(1): 014207. doi: 10.7498/aps.63.014207
    [10] 唐洁, 傅明星, 吴学兵. 基于结构函数方法的类星体证认. 物理学报, 2012, 61(21): 219501. doi: 10.7498/aps.61.219501
    [11] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [12] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [13] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [14] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [15] 杨爱林, 李晋红, 吕百达. 大气湍流中光束束宽扩展和角扩展的比较研究. 物理学报, 2009, 58(4): 2451-2460. doi: 10.7498/aps.58.2451
    [16] 李晋红, 杨爱林, 吕百达. 部分相干厄米-双曲正弦-高斯光束通过湍流大气传输的平均光强分布演化和角扩展. 物理学报, 2009, 58(1): 674-683. doi: 10.7498/aps.58.674
    [17] 陈晓文, 季小玲. 湍流对环状光束扩展的影响. 物理学报, 2009, 58(4): 2435-2443. doi: 10.7498/aps.58.2435
    [18] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [19] 季小玲, 黄太星, 吕百达. 部分相干双曲余弦高斯光束通过湍流大气的光束扩展. 物理学报, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
    [20] 罗马, 陈之江, 韩涛, 岳刚. 光子结构函数的直接检验. 物理学报, 1986, 35(2): 161-170. doi: 10.7498/aps.35.161
计量
  • 文章访问数:  6349
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-09-13
  • 刊出日期:  2019-11-20

/

返回文章
返回