-
In recent years, new optoelectronic materials such as GaN-based thin-film semiconductors and rare-earth-ion doped luminescent materials have aroused the interest of many researchers. The GaN-based semiconductors have wide and direct energy gaps which could be adjusted to cover the whole visible light spectrum region by doping. They have been successfully applied to fabrications of blue lasers and light emitting diodes. The rare-earth-ion doped luminescent materials have exhibited many advantages in luminescent properties such as intense narrow-band emissions, high conversion efficiency, wide emission peaks ranging from ultraviolet to near infrared, long lifetime ranging from nanoseconds to milliseconds, and good thermal stability. They have been widely applied in the fields of illumination, imaging, display, and medical radiology. So far, the studies on GaN-based thin-film semiconductors and rare-earth-ion doped luminescent materials focus mainly on their growth and linear optical properties. In contrast, the investigations of the nonlinear optical properties of these materials, which have potential applications in many fields, are still lacking. In this paper, GaN-based thin-film semiconductors, such as undoped GaN, Mg-doped GaN and InGaN/GaN multiple quantum wells, are successfully grown by metal-organic chemical vapor deposition. Their nonlinear optical properties are studied by using an 800-nm femtosecond laser light. The nonlinear optical properties are different when the laser light is focused on different positions of the samples. The competition between different nonlinear optical effects reflect directly the competition in stimulated luminescence energy. And particularly, it is closely related to the density of energy states, stimulated luminescence energy, and the sample band gap energy difference. In addition, the competition between different nonlinear optical effects, such as multiphoton-induced luminescence and second harmonic generation, is clearly revealed and is manifested in the dependence of the nonlinear optical signal on excitation intensity in this investigation. And also, the competition mechanism is preliminary studied in this paper.
[1] Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675
[2] Yuan M H, Li H, Zeng J H, Fan H H, Lan S, Li S T 2014 Opt. Lett. 39 3555
[3] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[4] Passeri D, Larciprete M C, Belardini A, Paoloni S, Passaseo A, Sibilia C, Michelotti F 2004 Appl. Phys. B 79 611
[5] Yang A L, Song H P, Wei H Y, Liu X L, Wang J, Lv X Q, Jin P, Yang S Y, Zhu Q S, Wang Z G 2009 Appl. Phys. Lett. 94 163301
[6] Limpijumnong S, van de Walle C G 2004 Phys. Rev. B 69 035207
[7] Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691
[8] Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106
[9] Liu R, Bell A, Ponce F A, Chen C Q, Yang J W, Khan M A 2005 Appl. Phys. Lett. 86 021908
[10] Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301
[11] Pawlowski R P, Theodoropoulos C, Salinger A G, Mountziaris T J, Moffat H K, Shadid J N, Thrush E J 2000 J. Cryst. Growth 221 622
[12] Lo F Y, Huang C D, Chou K C, Guo J Y, Liu H L, Ney V, Ney A, Shvarkov S, Pezzagna S, Reuter D, Chia C T, Chern M Y, Wieck A D, Massies J 2014 J. Appl. Phys. 116 043909
[13] Schneck J R, Dimakis E, Woodward J, Erramilli S, Moustakas T D, Ziegler L D 2012 Appl. Phys. Lett. 101 142102
[14] Heikkilä O, Oksanen J, Tulkki J 2013 Appl. Phys. Lett. 102 111111
[15] Vispute R D, Talyansky V, Trajanovic Z 1997 Appl. Phys. Lett. 70 2735
[16] Li G C, Zhang C Y, Deng H D, Liu G Y, Lan S, Qian Q, Gopal A V 2013 Opt. Express 21 6020
[17] Yang H, Xu S J, Li Q, Zhang J 2006 Appl. Phys. Lett. 88 161113
[18] Saidi I, Bouzaïene L, Maaref H, Mejri H 2007 J. Appl. Phys. 101 094506
[19] Fang Y, Wu X Z, Ye F, Chu X Y, Li Z G, Yang J Y, Song Y L 2013 J. Appl. Phys. 114 103507
[20] Kravetsky I V, Tiginyanu I M, Hildebrandt R, Marowsky G, Pavlidis D, Eisenbach A, Hartnagel H L 2000 Appl. Phys. Lett. 76 810
[21] Dai J, Dai Q F, Zeng J H, Lan S, Wan X, Tie S L 2013 IEEE J. Quantum Electron. 49 903
[22] Dai J, Zeng J H, Lan S, Wan X, Tie S L 2013 Opt. Express 21 10025
-
[1] Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675
[2] Yuan M H, Li H, Zeng J H, Fan H H, Lan S, Li S T 2014 Opt. Lett. 39 3555
[3] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[4] Passeri D, Larciprete M C, Belardini A, Paoloni S, Passaseo A, Sibilia C, Michelotti F 2004 Appl. Phys. B 79 611
[5] Yang A L, Song H P, Wei H Y, Liu X L, Wang J, Lv X Q, Jin P, Yang S Y, Zhu Q S, Wang Z G 2009 Appl. Phys. Lett. 94 163301
[6] Limpijumnong S, van de Walle C G 2004 Phys. Rev. B 69 035207
[7] Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691
[8] Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106
[9] Liu R, Bell A, Ponce F A, Chen C Q, Yang J W, Khan M A 2005 Appl. Phys. Lett. 86 021908
[10] Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301
[11] Pawlowski R P, Theodoropoulos C, Salinger A G, Mountziaris T J, Moffat H K, Shadid J N, Thrush E J 2000 J. Cryst. Growth 221 622
[12] Lo F Y, Huang C D, Chou K C, Guo J Y, Liu H L, Ney V, Ney A, Shvarkov S, Pezzagna S, Reuter D, Chia C T, Chern M Y, Wieck A D, Massies J 2014 J. Appl. Phys. 116 043909
[13] Schneck J R, Dimakis E, Woodward J, Erramilli S, Moustakas T D, Ziegler L D 2012 Appl. Phys. Lett. 101 142102
[14] Heikkilä O, Oksanen J, Tulkki J 2013 Appl. Phys. Lett. 102 111111
[15] Vispute R D, Talyansky V, Trajanovic Z 1997 Appl. Phys. Lett. 70 2735
[16] Li G C, Zhang C Y, Deng H D, Liu G Y, Lan S, Qian Q, Gopal A V 2013 Opt. Express 21 6020
[17] Yang H, Xu S J, Li Q, Zhang J 2006 Appl. Phys. Lett. 88 161113
[18] Saidi I, Bouzaïene L, Maaref H, Mejri H 2007 J. Appl. Phys. 101 094506
[19] Fang Y, Wu X Z, Ye F, Chu X Y, Li Z G, Yang J Y, Song Y L 2013 J. Appl. Phys. 114 103507
[20] Kravetsky I V, Tiginyanu I M, Hildebrandt R, Marowsky G, Pavlidis D, Eisenbach A, Hartnagel H L 2000 Appl. Phys. Lett. 76 810
[21] Dai J, Dai Q F, Zeng J H, Lan S, Wan X, Tie S L 2013 IEEE J. Quantum Electron. 49 903
[22] Dai J, Zeng J H, Lan S, Wan X, Tie S L 2013 Opt. Express 21 10025
计量
- 文章访问数: 6341
- PDF下载量: 74
- 被引次数: 0