搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子间相互作用势对中Al浓度Ni75AlxV25-x合金沉淀序列的影响

田晓林 赵宇宏 田晋忠 侯华

引用本文:
Citation:

原子间相互作用势对中Al浓度Ni75AlxV25-x合金沉淀序列的影响

田晓林, 赵宇宏, 田晋忠, 侯华

Effects of interatomic potential on precipitation sequences of medium Al concentration in Ni75AlxV25-x alloys

Tian Xiao-Lin, Zhao Yu-Hong, Tian Jin-Zhong, Hou Hua
PDF
导出引用
  • 基于微观相场模型与反演算法,研究了中Al浓度及温度对Ni75AlxV25-x合金沉淀过程的影响:在相同浓度下,L12与DO22结构的第一近邻原子间相互作用势随温度升高呈线性增加,两者呈正比的关系;但在同一温度下,L12(DO22)结构的第一近邻原子间相互作用势随Al原子浓度的增加而增加(减少).同时将反演得出的原子作用势代入微观相场模拟中,探讨中Al浓度合金沉淀序列与原子作用势的关系,即当L12的第一近邻原子间相互作用势大于(小于)DO22时,L12(DO22)优先析出;当L12和DO22的第一近邻原子间相互作用势相等时,两者同时析出.特别地,当Al原子的浓度等于0.0589时,发现L12和DO22同时析出.利用微观相场法反演原子间相互作用势,为判断中Al浓度合金的沉淀序列增加了可信度.
    The study of material properties show that there is a large space and time span from the electronic level, atomic level, to molecules, clusters, mesoscopic to macroscopic continuous medium. Different levels are dealt with by using different research methods. The interatomic potential function method is an important intermediary bridging from atomic level to cluster and mesoscopic physics research. Therefore, it is not only for a research field of condensed matter physics, but also for an interdisciplinary research. The interatomic potential, as the basis of all computer simulations at an atomic level, directly affects the accuracy of simulation results. That is to say, it is a greatly significant to study the interatomic potential at the atomic level. This article is based on the inversion algorithm and microscopic phase field, and the influence of medium Al concentration and temperature on the precipitation process of Ni75AlxV25-x alloy are studied. At the same concentration, the first nearest neighbor interatomic potential of L12 and DO22 phase increase linearly with increasing temperature, which is proportional to each other. However, the first nearest neighbor interatomic potential for L12 (DO22) phase increases (decreases) with the increase of Al atom concentration at a constant temperature. When the temperature is 1046.5 K and the concentration of Al is 0.06, the interatomic potential of L12 phase is consistent with the first principles calculation by Chen, indicating the reliability of the inversion algorithm. At the same time, the inverse interatomic potentials are taken into consideration in the microscopic phase field simulation to investigate the relationship between the precipitation sequence of the medium Al alloy and the interaction potential between atoms. That is to say, when the first neighbor interatomic potential of L12 is greater than (less than DO22) L12 (DO22) precipitated preferentially. The first nearest neighbor interatomic potential for L12 and DO22 are equal, both of which are precipitated at the same time. In particular, when the concentration of Al atoms is equal to 0.0589, it is found that L12 and DO22 are simultaneously precipitated. The precipitation mechanism of the alloy with medium Al concentration is a hybrid mechanism with both non-classical nucleation and instability decomposition characteristics. Since the precipitation mechanism of the medium-concentrated alloy is a hybrid mechanism with both non-classical nucleation and spinodal decomposition, the microscopic phase field method is used to invert the interatomic potential, which increases the reliability of the precipitation sequence of medium the Al alloy.
    • 基金项目: 国家自然科学基金(批准号:51774254,51774253,51701187,U1610123,51674226,51574207,51574206)和山西省科技重大专项(批准号:MC2016-06)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51774254, 51774253, 51701187, U1610123, 51674226, 51574207, 51574206) and the Science and Technology Major Project of Shanxi Province, China (Grant No. MC2016-06).
    [1]

    Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67

    [2]

    Asta M, Foiles S M 1996 Phys. Rev. B 53 2389

    [3]

    Lee B J, Shim J H, Baskes M I 2003 Phys. Rev. B 68 399

    [4]

    Wang T, Chen L Q, Liu Z K 2006 Mater. Sci. Eng. A 431 196

    [5]

    Oluwajobi A, Chen X 2013 Key Eng. Mater. 535 330

    [6]

    Purja Pun G P, Darling K A, Kecskes L J, Mishin Y 2015 Acta Mater. 100 377

    [7]

    Choi W M, Kim Y, Seol D, Lee B J 2017 Comput. Mater. Sci. 130 121

    [8]

    Poduri R, Chen L Q 1998 Acta Mater. 46 1719

    [9]

    Lu Y L, Zhang L C, Chen Y P, Wang Y X 2013 Intermetallics 38 144

    [10]

    Zhang M Y, Li Z G, Zhang J L, Zhang H Z, Chen Z, Zhang J Z 2015 Trans. Nonferrous Met. Soc. China 25 1599

    [11]

    Czeppe T, Korznikova G F, Korznikov A W, Lityns K L, Swiatek Z 2013 Arch. Metall. Mater. 58 447

    [12]

    Zhang W Q, Xie Q, Ge X J, Chen N X 1997 J. Appl. Phys. 82 578

    [13]

    Cai J, Hu X Y, Chen N X 2005 Phys. Chem. Solids 66 1256

    [14]

    Ma Q S, Ma Z P, Zhao Y H, Yu L M, Liu C X, Guo Q Y, Li H J A, Hossain M S, Alshehri A A, Yamauchi Y, Liu Y C 2018 Sci. Adv. Mater. 10 904

    [15]

    Kostorz G 1985 Acta Crystallogr. Sect. A: Found. Crystallogr. 41 208

    [16]

    Chen L Q 1993 Scr. Metall. Mater. 29 683

    [17]

    Chen L Q, Khachaturyan A G 1991 Acta Metall. Mater. 39 2533

    [18]

    Khachaturyan A G 1983 Theory of Structural Transformations in Solids (New York: Wiley) p66

  • [1]

    Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67

    [2]

    Asta M, Foiles S M 1996 Phys. Rev. B 53 2389

    [3]

    Lee B J, Shim J H, Baskes M I 2003 Phys. Rev. B 68 399

    [4]

    Wang T, Chen L Q, Liu Z K 2006 Mater. Sci. Eng. A 431 196

    [5]

    Oluwajobi A, Chen X 2013 Key Eng. Mater. 535 330

    [6]

    Purja Pun G P, Darling K A, Kecskes L J, Mishin Y 2015 Acta Mater. 100 377

    [7]

    Choi W M, Kim Y, Seol D, Lee B J 2017 Comput. Mater. Sci. 130 121

    [8]

    Poduri R, Chen L Q 1998 Acta Mater. 46 1719

    [9]

    Lu Y L, Zhang L C, Chen Y P, Wang Y X 2013 Intermetallics 38 144

    [10]

    Zhang M Y, Li Z G, Zhang J L, Zhang H Z, Chen Z, Zhang J Z 2015 Trans. Nonferrous Met. Soc. China 25 1599

    [11]

    Czeppe T, Korznikova G F, Korznikov A W, Lityns K L, Swiatek Z 2013 Arch. Metall. Mater. 58 447

    [12]

    Zhang W Q, Xie Q, Ge X J, Chen N X 1997 J. Appl. Phys. 82 578

    [13]

    Cai J, Hu X Y, Chen N X 2005 Phys. Chem. Solids 66 1256

    [14]

    Ma Q S, Ma Z P, Zhao Y H, Yu L M, Liu C X, Guo Q Y, Li H J A, Hossain M S, Alshehri A A, Yamauchi Y, Liu Y C 2018 Sci. Adv. Mater. 10 904

    [15]

    Kostorz G 1985 Acta Crystallogr. Sect. A: Found. Crystallogr. 41 208

    [16]

    Chen L Q 1993 Scr. Metall. Mater. 29 683

    [17]

    Chen L Q, Khachaturyan A G 1991 Acta Metall. Mater. 39 2533

    [18]

    Khachaturyan A G 1983 Theory of Structural Transformations in Solids (New York: Wiley) p66

  • [1] 杨一波, 赵宇宏, 田晓林, 侯华. Ni60Al20V20中熵合金沉淀过程微扩散相场法模拟. 物理学报, 2020, 69(14): 140201. doi: 10.7498/aps.69.20200154
    [2] 闫欢欢, 李晓静, 张兴赢, 王维和, 陈良富, 张美根, 徐晋. 大气SO2柱总量遥感反演算法比较分析及验证. 物理学报, 2016, 65(8): 084204. doi: 10.7498/aps.65.084204
    [3] 刘广东, 张开银. 二维电磁逆散射问题的时域高斯-牛顿反演算法. 物理学报, 2014, 63(3): 034102. doi: 10.7498/aps.63.034102
    [4] 丁敏, 薛晖, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良. 基于电磁超材料的两种等效参数提取算法的比较分析. 物理学报, 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [5] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [6] 陈季香, 羌建兵, 王清, 董闯. 以最大原子密度定义合金相中的第一近邻团簇. 物理学报, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [7] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [8] 刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军. 基于红外掩日通量法(SOF)污染源排放气体浓度时空分布反演算法研究. 物理学报, 2010, 59(8): 5397-5405. doi: 10.7498/aps.59.5397
    [9] 盛峥, 黄思训, 赵小峰. 雷达回波资料反演海洋波导中观测值权重的确定. 物理学报, 2009, 58(9): 6627-6632. doi: 10.7498/aps.58.6627
    [10] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [11] 冯培成, 王登龙. 计及次近邻非谐相互作用下原子链中的非线性元激发. 物理学报, 2003, 52(6): 1332-1336. doi: 10.7498/aps.52.1332
    [12] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. LiNbO3晶体中离子间相互作用势的经验参量的确定. 物理学报, 2000, 49(12): 2433-2436. doi: 10.7498/aps.49.2433
    [13] 王登龙, 颜晓红, 唐 翌. 考虑次近邻相互作用下一维单原子链中的孤立波. 物理学报, 2000, 49(9): 1736-1740. doi: 10.7498/aps.49.1736
    [14] 王福合, 杨金龙, 李家明. Al(111)表面单个Al原子的操纵── W针尖与Al原子的相互作用. 物理学报, 1998, 47(11): 1827-1839. doi: 10.7498/aps.47.1827
    [15] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同. 碱土氟化物中离子间相互作用势经验参数的确定. 物理学报, 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [16] 戴长建. 自电离序列间的相互作用. 物理学报, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [17] 王文采;陈玉. Fe_80_B_20_,Fe_80_Si_6_B_14_;金属玻璃中近邻原子间的相互作用. 物理学报, 1987, 36(8): 1033-1040. doi: 10.7498/aps.36.1033
    [18] 蔡树棠. 泥沙在动水中的沉淀运动(二)——泥沙在层流中的沉淀运动. 物理学报, 1957, 13(5): 399-408. doi: 10.7498/aps.13.399
    [19] 蔡树棠. 泥沙在动水中的沉淀运动(一)——圆球在流体中运动时所受的阻力. 物理学报, 1957, 13(5): 389-398. doi: 10.7498/aps.13.389
    [20] 林家翘. 在二元合金超格中,原子间相互作用之能量与其排列之关系. 物理学报, 1939, 3(2): 182-197. doi: 10.7498/aps.3.182
计量
  • 文章访问数:  5475
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-15
  • 修回日期:  2018-09-08
  • 刊出日期:  2018-12-05

/

返回文章
返回