-
各种环境毒物危害着人类的生产生活,二噁英更是严重危害人类的健康.C12H4Cl4O2(2,3,7,8-tetrachlorodibenzo-p-dioxin,TCDD)是二噁英中毒性最强的化合物,也是目前已知毒性最强的污染物.为研究TCDD外场效应,采用密度泛函理论方法优化了不同静电场0–0.025 a.u.(0–1.2856×1010 V/m)作用下TCDD分子的基态几何结构,得到了分子总能量;在此基础上,采用含时密度泛函理论方法对TCDD分子的紫外-可见(UV-Vis)吸收光谱在不同外电场下的变化进行了研究.结果表明:分子几何构型与电场大小呈现强烈的依赖关系,分子总能量随着外电场的增强而减小;伴随着外电场的增强,分子激发态的摩尔吸收系数逐渐减小,UV-Vis吸收峰显著红移.
-
关键词:
- C12H4Cl4O2 /
- 外电场 /
- 密度泛函理论 /
- 紫外-可见光谱
Various environmental poisons have caused damage to human production and life, and dioxin has seriously harmed human health. The C12H4Cl4O2(2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, TCDD) is currently the most toxic compound. In order to study the influence of external electrical field on molecular structure and spectrum, herein the density functional theory (DFT) at a B3LYP/6-31+g (d,p) level is employed to calculate the geometrical parameters of the ground state of TCDD molecule under external electric fields ranging from 0 to 0.025 a.u. (0-1.2856×1010 V/m). Based on the optimized structure, time-dependent DFT at the same level as the above is adopted to calculate the absorption wavelengths and the molar absorption coefficients for the first twenty-six excited states of TCDD molecule under external electric fields. The results show that the most absorption band located at 221 nm with a molar absorption coefficient of 54064 L·mol-1·cm-1 in the UV-Vis absorption spectrum appears in the E belt, which originates from the benzene electronic transition from π to π*. In addition, a shoulder peak at 296 nm appears in the B belt, which is the characteristic absorption of aromatic compounds' electron transition from π to π*. Compared with the data in the literature, the wavelength of the shoulder is blue-shifted only 9 nm. The molecular geometry parameters are strongly dependent on the external field intensity, and the total energy decreases with external field intensity increasing. With the enhancement of external electric field, the electrons in the molecule have an overall transfer, which makes the big bond of benzene ring weakened, the energy of the transition decreases, and the wavelength of the transition increases, that is, the absorption peak is red-shifted. When the external electric field increases to 0.02 a.u., the electron cloud migration phenomenon of occupied and transition orbits of TCDD molecule are obvious, and the absorption peak red shift phenomenon is also very significant. With the enhancement of external electric field, the overall transfer of electrons in the molecule also reduces the density of the benzene rings and the surrounding electron cloud, reduces the number of electrons in the transition from π to π*, and also reduces the molar absorption coefficient. When the external electric field is enhanced to 0.02 a.u., the molar absorption coefficient decreases significantly. This work provides a theoretical basis for studying the TCDD detection and degradation method, and also has implications for other environmental pollutants detection methods and degradation mechanisms.-
Keywords:
- C12H4Cl4O2 /
- external electric field /
- density functional theory /
- ultraviolet-visible spectrum
[1] Dong S J, Liu G R, Zhu Q Q, Zhang X, Zheng M H 2016 Chin. Sci. Bull. 61 1336 (in Chinese) [董姝君, 刘国瑞, 朱青青, 张宪, 郑明辉 2016 科学通报 61 1336]
[2] Qian L X, Long H M, Wu X J, Chun T J, Wang Y P 2016 Environ. Pollut. Control 38 34 (in Chinese) [钱立新, 龙红明, 吴雪健, 春铁军, 王毅璠 2016 环境污染与防治 38 34]
[3] Fernández-González R, Yebra-Pimentel I, Martinez-Carballo E, Simal-Gándara J 2015 Crit. Rev. Food Sci. 55 1590
[4] Yang X, Yu G, Wang L S 2002 Chin. Sci. Bull. 47 269 (in Chinese) [杨曦, 余刚, 王连生 2002 科学通报 47 269]
[5] Miyazaki W, Fujiwara Y, Katoh T 2016 Neuro. Toxicol. 52 64
[6] Fracchiolla N S, Annaloro C, Guidotti F, Fattizzo B, Cortelezzi A 2016 Toxicology 374 60
[7] Du G Y, Wang Q, Zhang S L, Zhang S K, Deng C P, Zhang H M, Zhu M X, Jiang X, Zhu C W, Ren Y L 2017 Environ. Sci. 38 2280 (in Chinese) [杜国勇, 汪倩, 张姝琳, 张素坤, 邓春萍, 张洪铭, 朱盟翔, 蒋昕, 朱成旺, 任燕玲 2017 环境科学 38 2280]
[8] Zhang H P, Hou J L, Wang Y B, Tang P P, Zhang Y P, Lin X Y, Liu C S, Tang Y H 2017 Chemosphere 185 509
[9] Wang R X, Zhang D J, Liu C B 2017 Chemosphere 168 18
[10] Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102]
[11] Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170
[12] Walsh T D G, Starch L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853
[13] Wu H J, Wu M, Xie M S, Liu H, Yang M, Sun F X, Du H Z 2000 Chin. J. Catal. 21 399 (in Chinese) [吴合进, 吴鸣, 谢茂松, 刘鸿, 杨民, 孙福侠, 杜鸿章 2000 催化学报 21 399]
[14] Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111
[15] Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002
[16] Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329
[17] Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223
[18] Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Ling Hu R F 2015 Acta Phys. Sin. 64 153102 (in Chinese) [吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102]
[19] Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989 (in Chinese) [谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989]
[20] Khana M S, Pala S, Krupadamb R J 2015 J. Mol. Recognit. 28 427
[21] Gasiorskia P, Matusiewicza M, Gondekb E, Uchaczc T, Wojtasikd K, Daneld A, Shchure Y, Kityka A V 2017 Spectrochim. Acta A 186 89
[22] Liu X G, Cole M J, Xu Z C 2017 J. Phys. Chem. C 121 13274
[23] Großema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014
[24] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Chin. Phys. B 21 053101
[25] Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101
[26] Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737
[27] Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]
[28] Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203 (in Chinese) [陈晓军, 罗顺忠, 蒋树斌, 黄玮, 高小玲, 马美仲, 朱正和 2004 原子与分子物理学报 21 203]
[29] Koshioka M, Ishizaka M, Yamada T, Kanazawa J, Murai T 1990 J. Pesticide Sci. 15 39
-
[1] Dong S J, Liu G R, Zhu Q Q, Zhang X, Zheng M H 2016 Chin. Sci. Bull. 61 1336 (in Chinese) [董姝君, 刘国瑞, 朱青青, 张宪, 郑明辉 2016 科学通报 61 1336]
[2] Qian L X, Long H M, Wu X J, Chun T J, Wang Y P 2016 Environ. Pollut. Control 38 34 (in Chinese) [钱立新, 龙红明, 吴雪健, 春铁军, 王毅璠 2016 环境污染与防治 38 34]
[3] Fernández-González R, Yebra-Pimentel I, Martinez-Carballo E, Simal-Gándara J 2015 Crit. Rev. Food Sci. 55 1590
[4] Yang X, Yu G, Wang L S 2002 Chin. Sci. Bull. 47 269 (in Chinese) [杨曦, 余刚, 王连生 2002 科学通报 47 269]
[5] Miyazaki W, Fujiwara Y, Katoh T 2016 Neuro. Toxicol. 52 64
[6] Fracchiolla N S, Annaloro C, Guidotti F, Fattizzo B, Cortelezzi A 2016 Toxicology 374 60
[7] Du G Y, Wang Q, Zhang S L, Zhang S K, Deng C P, Zhang H M, Zhu M X, Jiang X, Zhu C W, Ren Y L 2017 Environ. Sci. 38 2280 (in Chinese) [杜国勇, 汪倩, 张姝琳, 张素坤, 邓春萍, 张洪铭, 朱盟翔, 蒋昕, 朱成旺, 任燕玲 2017 环境科学 38 2280]
[8] Zhang H P, Hou J L, Wang Y B, Tang P P, Zhang Y P, Lin X Y, Liu C S, Tang Y H 2017 Chemosphere 185 509
[9] Wang R X, Zhang D J, Liu C B 2017 Chemosphere 168 18
[10] Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102]
[11] Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170
[12] Walsh T D G, Starch L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853
[13] Wu H J, Wu M, Xie M S, Liu H, Yang M, Sun F X, Du H Z 2000 Chin. J. Catal. 21 399 (in Chinese) [吴合进, 吴鸣, 谢茂松, 刘鸿, 杨民, 孙福侠, 杜鸿章 2000 催化学报 21 399]
[14] Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111
[15] Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002
[16] Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329
[17] Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223
[18] Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Ling Hu R F 2015 Acta Phys. Sin. 64 153102 (in Chinese) [吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102]
[19] Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989 (in Chinese) [谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989]
[20] Khana M S, Pala S, Krupadamb R J 2015 J. Mol. Recognit. 28 427
[21] Gasiorskia P, Matusiewicza M, Gondekb E, Uchaczc T, Wojtasikd K, Daneld A, Shchure Y, Kityka A V 2017 Spectrochim. Acta A 186 89
[22] Liu X G, Cole M J, Xu Z C 2017 J. Phys. Chem. C 121 13274
[23] Großema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014
[24] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Chin. Phys. B 21 053101
[25] Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101
[26] Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737
[27] Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]
[28] Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203 (in Chinese) [陈晓军, 罗顺忠, 蒋树斌, 黄玮, 高小玲, 马美仲, 朱正和 2004 原子与分子物理学报 21 203]
[29] Koshioka M, Ishizaka M, Yamada T, Kanazawa J, Murai T 1990 J. Pesticide Sci. 15 39
计量
- 文章访问数: 6865
- PDF下载量: 85
- 被引次数: 0