搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率

王谦 刘卫国 巩蕾 王利国 李亚清

引用本文:
Citation:

双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率

王谦, 刘卫国, 巩蕾, 王利国, 李亚清

Determination of carrier bulk lifetime and surface recombination velocity in semiconductor from double-wavelength free carrier absorption

Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing
PDF
导出引用
  • 提出了采用双波长自由载流子吸收技术同时测量半导体材料载流子体寿命和前表面复合速率的方法.通过数值模拟,定性分析了不同载流子体寿命和前表面复合速率对信号的影响,同时对测量参数的可接受范围和不确定度进行计算并与传统频率扫描自由载流子吸收方法测量结果进行比较.结果表明:提出的双波长自由载流子吸收方法可明显减小载流子体寿命和前表面复合速率的测量不确定度,提高参数测量精度;表面杂质和缺陷越多的样品,其前表面复合速率测量不确定度越小.进一步分析表明,此现象与不同波长激光抽运产生的过剩载流子浓度分布不同有关.
    In microelectronic and photovoltaic industry, semiconductors are the basic materials in which impurities or defects have a serious influence on the properties of semiconductor-based devices. The determination of the electronic transport properties, i.e., the carrier bulk lifetime (τ) and the front surface recombination velocity (S1), is important for evaluating the semiconductor material. In this paper, a method of simultaneously measuring the bulk lifetime and the front surface recombination rate of semiconductor material by using double-wavelength free carrier absorption technique is presented. The effect of the carrier bulk lifetime and the front surface recombination rate on the modulated free carrier absorption signal (Ampratio and Phadiff) are qualitatively analyzed. The process of extracting the bulk lifetime and the front surface recombination rate by the proposed double-wavelength free carrier absorption method are also given. At the same time, the uncertainties of the parameters extracted by this method are calculated and compared with those obtained by the traditional frequency-scan free carrier absorption technique. The results show that the proposed method can significantly reduce the uncertainties of the measurement parameters, especially for the samples with higher surface recombination rate. For the sample with a lower front surface recombination rate (S1=102 m/s), the uncertainty of the carrier bulk lifetime and the front surface recombination velocity obtained by the proposed method are almost in agreement with those obtained by the conventional frequency-scan method. On the contrary, for the samples with higher front surface recombination rate (S1 ≥ 103 m/s), the uncertainties of the carrier transport parameters are much smaller than those from the conventional frequency-scan method. For example, the estimated uncertainty of the carrier bulk lifetime and the front surface recombination velocity for the sample with τ=10 μs and S1=103 m/s are approximately ±5.55% and ±2.83% by the proposed method, which are more improved than ±18.50% and ±31.46% by the conventional frequency-scan method with a wavelength of 405 nm. Finally, we explain the above phenomenon by analyzing the distribution of excess carrier concentration at different pump wavelengths. As the pump wavelength decreases, the more excess carriers are excited near the surface of the sample due to the greater absorption coefficient, and the influence of the surface recombination by the impurities and defects on the signal is more obvious. Therefore, the measurement accuracy of the front surface recombination rate can be improved effectively by using double wavelength pumping.
      通信作者: 王谦, qian_wang521@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61704132)和西安工业大学校长基金自选项目(批准号:XAGDXJJ16007)资助的课题.
      Corresponding author: Wang Qian, qian_wang521@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61704132) and the Principal Fund from Xi'an Technological University, China (Grant No. XAGDXJJ16007).
    [1]

    Schroder D K 2006 Semiconductor Material and Device Characterization Third Edition (New York: Wiley) pp389-390

    [2]

    Drummond P J, Bhatia D, Kshirsagar A, Ramani S, Ruzyllo J 2011 Thin Solid Films 519 7621

    [3]

    Guidotti D, Batchelder J S, Finkel A, Gerber P D 1989 J. Appl. Phys. 66 2542

    [4]

    Wang K, Kampwerth H 2014 J. Appl. Phys. 115 173103

    [5]

    Rodriguez M E, Mandelis A, Pan G, Nicolaides L, Garcia J A, Riopel Y 2000 J. Electrochem. Soc. 147 687

    [6]

    Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208

    [7]

    Huang Q P, Li B C 2012 J. Appl. Phys. 111 093729

    [8]

    Wang Q, Liu W 2017 J. Appl. Phys. 122 165702

    [9]

    Luke K L, Cheng L J 1987 J. Appl. Phys. 61 2282

    [10]

    Ren S, Li B, Huang Q 2013 J. Appl. Phys. 114 243702

    [11]

    Bychto L, Patryn A 2015 Phys. Status Solidi B 252 1311

    [12]

    Zhang X R, Gao C M 2014 Acta Phys. Sin. 63 137801 (in Chinese)[张希仁, 高春明 2014 物理学报 63 137801]

    [13]

    Conway E J 1970 J. Appl. Phys. 41 1689

    [14]

    Chen F Y 1985 Appl. Phys. Lett. 47 858

    [15]

    Polla D L 1983 IEEE Electron Dev. Lett. 4 185

    [16]

    Sanii F, Schwartz R J, Pierret R F 1988 Proceedings of the 20th IEEE Photovoltaic Specialists Conference Las Vegas, USA, September 26-30, 1988 p575

    [17]

    Zhang X R, Li B C, Liu X M 2008 Acta Phys. Sin. 57 7310 (in Chinese)[张希仁, 李斌成, 刘显明 2008 物理学报 57 7310]

    [18]

    Zhang X R, Li B C, Gao C 2006 Appl. Phys. Lett. 89 112120

    [19]

    Zhang X R, Li B C, Liu X M 2008 J. Appl. Phys. 104 103705

    [20]

    Huang Q P, Li B C, Liu X M 2010 J. Phys.: Conf. Ser. 214 012084

    [21]

    Huang Q P, Li B C 2011 Rev. Sci. Instrum. 82 043104

    [22]

    Huang Q P, Li B C 2011 J. Appl. Phys. 109 023708

  • [1]

    Schroder D K 2006 Semiconductor Material and Device Characterization Third Edition (New York: Wiley) pp389-390

    [2]

    Drummond P J, Bhatia D, Kshirsagar A, Ramani S, Ruzyllo J 2011 Thin Solid Films 519 7621

    [3]

    Guidotti D, Batchelder J S, Finkel A, Gerber P D 1989 J. Appl. Phys. 66 2542

    [4]

    Wang K, Kampwerth H 2014 J. Appl. Phys. 115 173103

    [5]

    Rodriguez M E, Mandelis A, Pan G, Nicolaides L, Garcia J A, Riopel Y 2000 J. Electrochem. Soc. 147 687

    [6]

    Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208

    [7]

    Huang Q P, Li B C 2012 J. Appl. Phys. 111 093729

    [8]

    Wang Q, Liu W 2017 J. Appl. Phys. 122 165702

    [9]

    Luke K L, Cheng L J 1987 J. Appl. Phys. 61 2282

    [10]

    Ren S, Li B, Huang Q 2013 J. Appl. Phys. 114 243702

    [11]

    Bychto L, Patryn A 2015 Phys. Status Solidi B 252 1311

    [12]

    Zhang X R, Gao C M 2014 Acta Phys. Sin. 63 137801 (in Chinese)[张希仁, 高春明 2014 物理学报 63 137801]

    [13]

    Conway E J 1970 J. Appl. Phys. 41 1689

    [14]

    Chen F Y 1985 Appl. Phys. Lett. 47 858

    [15]

    Polla D L 1983 IEEE Electron Dev. Lett. 4 185

    [16]

    Sanii F, Schwartz R J, Pierret R F 1988 Proceedings of the 20th IEEE Photovoltaic Specialists Conference Las Vegas, USA, September 26-30, 1988 p575

    [17]

    Zhang X R, Li B C, Liu X M 2008 Acta Phys. Sin. 57 7310 (in Chinese)[张希仁, 李斌成, 刘显明 2008 物理学报 57 7310]

    [18]

    Zhang X R, Li B C, Gao C 2006 Appl. Phys. Lett. 89 112120

    [19]

    Zhang X R, Li B C, Liu X M 2008 J. Appl. Phys. 104 103705

    [20]

    Huang Q P, Li B C, Liu X M 2010 J. Phys.: Conf. Ser. 214 012084

    [21]

    Huang Q P, Li B C 2011 Rev. Sci. Instrum. 82 043104

    [22]

    Huang Q P, Li B C 2011 J. Appl. Phys. 109 023708

  • [1] 娄艳芝, 李玉武. K-M花样分析法测定薄晶体厚度和消光距离的不确定度评定. 物理学报, 2022, 71(14): 146803. doi: 10.7498/aps.71.20212271
    [2] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏. 可搬运锶光晶格钟系统不确定度的评估. 物理学报, 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [3] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清, 刘蓉. 光子重吸收对硅片的光载流子辐射特性影响的理论研究. 物理学报, 2019, 68(4): 047201. doi: 10.7498/aps.68.20181889
    [4] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [5] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹. 66116618 cm-1之间氨气光谱线强的测量. 物理学报, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [6] 方少寅, 陆海铭, 赖天树. 自旋极化度对GaAs量子阱中吸收饱和效应与载流子复合动力学的影响研究. 物理学报, 2015, 64(15): 157201. doi: 10.7498/aps.64.157201
    [7] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [8] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究. 物理学报, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [9] 张希仁, 高椿明. 方波调制下自由载流子吸收测量半导体载流子输运参数的时域模型. 物理学报, 2014, 63(13): 137801. doi: 10.7498/aps.63.137801
    [10] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [11] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 物理学报, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [12] 刘子龙, 陈锐, 廖宁放, 李在清, 王煜. 大幅提高视觉密度国家基准测量水平的方法研究. 物理学报, 2012, 61(23): 230601. doi: 10.7498/aps.61.230601
    [13] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [14] 李巍, 李斌成. 半导体特性的调制自由载流子吸收变距频率扫描方法研究. 物理学报, 2009, 58(9): 6506-6511. doi: 10.7498/aps.58.6506
    [15] 张希仁, 李斌成, 刘显明. 调制自由载流子吸收测量半导体载流子输运参数的三维理论. 物理学报, 2008, 57(11): 7310-7316. doi: 10.7498/aps.57.7310
    [16] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [17] 董国义, 李晓苇, 韦志仁, 杨少鹏, 韩 理, 傅广生. 微波吸收法研究Mn,Cu掺杂对ZnS:Mn,Cu光生载流子复合过程的影响. 物理学报, 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [18] 李标, 褚君浩, 石晓红, 陈新强, 曹菊英, 汤定元. Hg1-xCdxTe外延薄膜的自由载流子吸收. 物理学报, 1996, 45(9): 1430-1437. doi: 10.7498/aps.45.1430
    [19] 王启明. 正弦式注入下半导体中过剩载流子的相移寿命. 物理学报, 1966, 22(3): 318-324. doi: 10.7498/aps.22.318
    [20] 黄启圣, 汤定元. 锑化铟中载流子的复合过程. 物理学报, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
计量
  • 文章访问数:  7752
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-10
  • 修回日期:  2018-08-30
  • 刊出日期:  2018-11-05

/

返回文章
返回