搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合多铁链的磁电耦合行为与外场调控

黄颖妆 齐岩 杜安 刘佳宏 艾传韡 戴海燕 张小丽 黄雨嫣

引用本文:
Citation:

复合多铁链的磁电耦合行为与外场调控

黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣

Magnetoelectric coupling and external field modulation of a composite multiferroic chain

Huang Ying-Zhuang, Qi Yan, Du An, Liu Jia-Hong, Ai Chuan-Wei, Dai Hai-Yan, Zhang Xiao-Li, Huang Yu-Yan
PDF
导出引用
  • 对含有界面磁电耦合的有限长铁电-铁磁多铁链体系进行了研究,基于矢量离散化思想,构建了描述其磁电性质的微观海森伯模型.利用传递矩阵方法获得了磁化强度、电极化强度、磁电化率等关键热力学量的解析表达式,重点探讨了界面磁电耦合、外场以及单离子各向异性对体系磁电耦合行为的影响和调控.研究结果表明,界面磁电耦合对体系的磁化强度和电极化强度均起促进作用.电场驱动下的电致磁电化率具有更强的磁电关联效应,预示着外电场能够有效地调控体系的磁性行为.而在磁致磁电化率中观察到的低温峰主要源于外磁场的诱导.此外,在高电场作用下体系比热容还呈现出有趣的三峰结构,这种三峰结构是自旋态的热激发以及电偶极矩的电场和温度共同激发导致的.
    Multiferroics, can simultaneously exhibit multiple ferroic orders, including magnetic order, electric order and elastic order. Among these orders there exist intimately coupling effects. Multiferroics is significant for technological applications and fundamental research. The interplay between ferroelectricity and magnetism allows a magnetic control of ferroelectric properties and an electric control of magnetic properties, which can yield new device concepts. Recent experimental research shows that the Fe/BaTiO3 compound exhibits a prominent magnetoelectric effect, which originates from a change in bonding at the ferroelectric-ferromagnet interface that changes the interface magnetization when the electric polarization reverses, and thus offering a new route to controlling the magnetic properties of multilayer compound heterostructures by the electric field. Motivated by recent discoveries, in this paper we investigate theoretically the thermodynamics of a finite ferroelectric-ferromagnetic chain. A microscopic Heisenberg spin model is constructed to describe magnetoelectric properties of this composite chain, in which electric and magnetic subsystem are coupled through interfacial coupling. However, this vector model is not integrable in general. Therefore, one has to resort to numerical calculations for the thermodynamic properties of such a system. A uniform discrete spin vector is adopted here to approximate the original continuous one, and then the transfer-matrix method is employed to derive the analytical expression. To verify its rationality and effectiveness, the zero-field specific heat of a classical spin chain is solved based on this simplified model, and compared with the exact solution. It demonstrates that the main characteristics obtained by previous research are well reproduced here, and the whole variant trend is also identical. And then the quantities concerned in this paper are calculated, including the magnetization, polarization, magnetoelectric susceptibility, and specific heat. The influence of interfacial coupling, external field, and single-ion anisotropy on the magnetoelectric effect of the composite chain are examined in detail. The results reveal that the interfacial coupling enhances the magnetization and polarization. And in the magnetic field driven magnetoelectric susceptibility, the large magnetoelectric correlation effects are observed, indicating that the magnetic behaviors can be effectively controlled by an external electric field. Meanwhile, it is also found that the external field and single-ion anisotropy both suppress the magnetoelectric susceptibility. In addition, interestingly, the specific heat of system presents a three-peak structure under high electric field, which stems from the thermal excitation of spin states as well as dipole moment caused jointly by electric field and temperature.
    • 基金项目: 国家自然科学基金(批准号:11804044,11547236)、辽宁省教育厅一般项目(批准号:L2015130)、大连民族大学大学生创新创业训练计划(批准号:201712026069)和中央高校基本科研业务费(批准号:DCPY2016014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804044, 11547236), the General Project of the Education Department of Liaoning Province, China (Grant No. L2015130), the Training Programs of Innovation and Entrepreneurship for Undergraduates of Dalian Minzu University (Grant No. 201712026069), and the Fundamental Research Funds for the Central Universities, China (Grant No. DCPY2016014).
    [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [2]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046

    [3]

    Wei L, Hu Z, Du G, Yuan Y, Wang J, Tu H, You B, Zhou S, Qu J, Liu H, Zheng R, Hu Y, Du J 2018 Adv. Mater. 30 1801885

    [4]

    Nozaki T, Sahashi M 2018 Jpn. J. Appl. Phys. 57 0902A2

    [5]

    Brivio S, Petti D, Bertacco R, Cezar J C 2011 Appl. Phys. Lett. 98 092505

    [6]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [7]

    Sahoo S, Polisetty S, Duan C G, Jaswal S S, Tsymbal E Y, Binek C 2007 Phys. Rev. B 76 092108

    [8]

    Horley P P, Sukhov A, Jia C, Martinez E, Berakdar J 2012 Phys. Rev. B 85 054401

    [9]

    Chotorlishvili L, Khomeriki R, Sukhov A, Ruffo S, Berakdar J 2013 Phys. Rev. Lett. 111 117202

    [10]

    Rondinelli J M, Stengel M, Spaldin N A 2008 Nat. Nanotechnol. 3 46

    [11]

    Cai T, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z, Shi J, Wang E 2009 Phys. Rev. B 80 140415

    [12]

    Sirker J 2010 Phys. Rev. B 81 014419

    [13]

    Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449

    [14]

    Paglan P A, Nguenang J P, Ruffo S 2018 Europhys. Lett. 122 68001

    [15]

    Sukhov A, Jia C, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201

    [16]

    Odkhuu D, Kioussis N 2018 Phys. Rev. B 97 094404

    [17]

    Wang Z, Grimson M J 2015 J. Appl. Phys. 118 124109

    [18]

    Gao R, Xu Z, Bai L, Zhang Q, Wang Z, Cai W, Chen G, Deng X, Cao X, Luo X, Fu C 2018 Adv. Electron. Mater. 4 1800030

    [19]

    Liu X T, Chen W J, Jiang G L, Wang B, Zheng Y 2016 Phys. Chem. Chem. Phys. 18 2850

    [20]

    Tokunaga Y, Taguchi Y, Arima T, Tokura Y 2012 Nat. Phys. 8 838

    [21]

    Gao X S, Liu J M, Chen X Y, Liu Z G 2000 J. Appl. Phys. 88 4250

    [22]

    Fisher M E 1964 Am. J. Phys. 32 343

    [23]

    Juhász Junger I, Ihle D 2005 Phys. Rev. B 72 064454

    [24]

    Härtel M, Richter J 2011 Phys. Rev. E 83 214412

    [25]

    Gong S J, Jiang Q 2004 Phys. Lett. A 333 124

    [26]

    Zhai L J, Wang H Y 2015 J. Magn. Magn. Mater. 377 121

    [27]

    Thakur P, Durganandini P 2018 Phys. Rev. B 97 064413

    [28]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [29]

    Liu M W, Chen Y, Song C C, Wu Y, Ding H L 2011 Solid State Commun. 151 503

    [30]

    Song C C, Chen Y, Liu M W 2010 Physica B 405 439

    [31]

    Juhász Junger I, Ihle D, Bogacz L, Janke W 2008 Phys. Rev. B 77 174411

    [32]

    Venkataiah G, Shirahata Y, Itoh M, Taniyama T 2011 Appl. Phys. Lett. 99 102506

    [33]

    Blöte H W J 1975 Physica B+C 79 427

  • [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [2]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046

    [3]

    Wei L, Hu Z, Du G, Yuan Y, Wang J, Tu H, You B, Zhou S, Qu J, Liu H, Zheng R, Hu Y, Du J 2018 Adv. Mater. 30 1801885

    [4]

    Nozaki T, Sahashi M 2018 Jpn. J. Appl. Phys. 57 0902A2

    [5]

    Brivio S, Petti D, Bertacco R, Cezar J C 2011 Appl. Phys. Lett. 98 092505

    [6]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [7]

    Sahoo S, Polisetty S, Duan C G, Jaswal S S, Tsymbal E Y, Binek C 2007 Phys. Rev. B 76 092108

    [8]

    Horley P P, Sukhov A, Jia C, Martinez E, Berakdar J 2012 Phys. Rev. B 85 054401

    [9]

    Chotorlishvili L, Khomeriki R, Sukhov A, Ruffo S, Berakdar J 2013 Phys. Rev. Lett. 111 117202

    [10]

    Rondinelli J M, Stengel M, Spaldin N A 2008 Nat. Nanotechnol. 3 46

    [11]

    Cai T, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z, Shi J, Wang E 2009 Phys. Rev. B 80 140415

    [12]

    Sirker J 2010 Phys. Rev. B 81 014419

    [13]

    Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449

    [14]

    Paglan P A, Nguenang J P, Ruffo S 2018 Europhys. Lett. 122 68001

    [15]

    Sukhov A, Jia C, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201

    [16]

    Odkhuu D, Kioussis N 2018 Phys. Rev. B 97 094404

    [17]

    Wang Z, Grimson M J 2015 J. Appl. Phys. 118 124109

    [18]

    Gao R, Xu Z, Bai L, Zhang Q, Wang Z, Cai W, Chen G, Deng X, Cao X, Luo X, Fu C 2018 Adv. Electron. Mater. 4 1800030

    [19]

    Liu X T, Chen W J, Jiang G L, Wang B, Zheng Y 2016 Phys. Chem. Chem. Phys. 18 2850

    [20]

    Tokunaga Y, Taguchi Y, Arima T, Tokura Y 2012 Nat. Phys. 8 838

    [21]

    Gao X S, Liu J M, Chen X Y, Liu Z G 2000 J. Appl. Phys. 88 4250

    [22]

    Fisher M E 1964 Am. J. Phys. 32 343

    [23]

    Juhász Junger I, Ihle D 2005 Phys. Rev. B 72 064454

    [24]

    Härtel M, Richter J 2011 Phys. Rev. E 83 214412

    [25]

    Gong S J, Jiang Q 2004 Phys. Lett. A 333 124

    [26]

    Zhai L J, Wang H Y 2015 J. Magn. Magn. Mater. 377 121

    [27]

    Thakur P, Durganandini P 2018 Phys. Rev. B 97 064413

    [28]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [29]

    Liu M W, Chen Y, Song C C, Wu Y, Ding H L 2011 Solid State Commun. 151 503

    [30]

    Song C C, Chen Y, Liu M W 2010 Physica B 405 439

    [31]

    Juhász Junger I, Ihle D, Bogacz L, Janke W 2008 Phys. Rev. B 77 174411

    [32]

    Venkataiah G, Shirahata Y, Itoh M, Taniyama T 2011 Appl. Phys. Lett. 99 102506

    [33]

    Blöte H W J 1975 Physica B+C 79 427

  • [1] 施洪潮, 唐炳, 刘超飞. 双层蜂窝状海森伯铁磁体中层间交换耦合相互作用对拓扑相的影响. 物理学报, 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [2] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析. 物理学报, 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [3] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [4] 楼国锋, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型. 物理学报, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [5] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [6] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器. 物理学报, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [7] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性. 物理学报, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [8] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [9] 范竑锐, 袁亚丽, 侯喜文. 用两比特海森伯XY模型研究热几何失协. 物理学报, 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [10] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性. 物理学报, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [11] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [12] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究. 物理学报, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [13] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质. 物理学报, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [14] 周宗立, 章国顺, 娄平. 相互作用突然开启后的反铁磁海森伯模型. 物理学报, 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [15] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [16] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质. 物理学报, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [17] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [18] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响. 物理学报, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [19] 王怀玉, 夏 青. 海森伯铁磁系统的总能量. 物理学报, 2007, 56(9): 5466-5470. doi: 10.7498/aps.56.5466
    [20] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
计量
  • 文章访问数:  6047
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-19
  • 修回日期:  2018-10-15
  • 刊出日期:  2019-12-20

/

返回文章
返回