搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干时间超过10 min的单离子量子比特

汪野 张静宁 金奇奂

引用本文:
Citation:

相干时间超过10 min的单离子量子比特

汪野, 张静宁, 金奇奂
cstr: 32037.14.aps.68.20181729

Single-ion qubit with coherence time exceeding 10 minutes

Wang Ye, Zhang Jing-Ning, Kim Kihwan
cstr: 32037.14.aps.68.20181729
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 能够长时间储存量子信息的量子存储设备是实现大规模量子计算和量子通信的基本要素. 与其他量子计算平台相比, 囚禁离子系统的优势之一在于具有很长的相干时间. 此前, 基于囚禁离子的单量子比特相干时间不到1 min. 研究发现, 在囚禁离子系统中, 限制量子比特相干时间的主要因素是运动能级加热和环境噪声, 其中后者包含环境磁场涨落和微波相位噪声. 在同时囚禁171Yb+离子和138Ba+离子的混合囚禁系统中, 通过实施协同冷却和动力学解耦, 可以实现相干时间超过10 min的单离子量子比特. 这一技术有望用于实现量子密码学和搭建混合量子计算平台.
    Quantum memory device capable of storing quantum information for a long period of time is one of the fundamental ingredients to realize large-scale quantum computation and quantum communication. Comparing with other quantum computation platforms, one of the advantages of the trapped-ion system is the long intrinsic coherence time. Before our work, the longest single-qubit coherence time in trapped-ion systems has been achieved to be less than 1 minute. It is discovered that the main limitation for the coherence time is the motional mode heating and the environment noise that includes the contributions from the magnetic field fluctuation and the phase noise of the microwaves. In a hybrid trapping system simultaneously trapping 171Yb+ and 138Ba+ ions, single-qubit quantum memories with coherence time longer than 10 minutes can be realized by applying sympathetic cooling and dynamical decoupling. This technique may have some value as the building blocks for quantum cryptography protocols and hybrid quantum computation platforms.
      通信作者: 张静宁, jnzhang13@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301901)和国家自然科学基金(批准号: 11374178, 11574002, 11504197)资助的课题.
      Corresponding author: Zhang Jing-Ning, jnzhang13@tsinghua.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301901) and the National Natural Science Foundation of China (Grant Nos. 11374178, 11574002, 11504197).
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [3]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [4]

    Wiesner S 1983 ACM SIGACT News 15 78

    [5]

    Pastawski F, Yao N Y, Jiang L, Lukin M D, Cirac J I 2012 Proc. Natl. Acad. Sci. U.S.A. 109 16079Google Scholar

    [6]

    Nickerson N H, Fitzsimons J F, Benjamin S C 2014 Phys. Rev. X 4 041041Google Scholar

    [7]

    Kielpinski D, Monroe C, Wineland D J 2002 Nature 417 709Google Scholar

    [8]

    Blinov B B, Moehring D L, Duan L M, Monroe C 2004 Nature 428 153Google Scholar

    [9]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [10]

    Monroe C, Kim J 2013 Science 339 1164Google Scholar

    [11]

    Bollinger J, Heizen D, Itano W, et al. 1991 IEEE Trans. Instrum. Meas. 40 126Google Scholar

    [12]

    Fisk P, Sellars M, Lawn M, et al. 1995 IEEE Trans. Instrum. Meas. 44 113Google Scholar

    [13]

    Langer C, Ozeri R, Jost J, et al. 2005 Phys. Rev. Lett. 95 060502Google Scholar

    [14]

    Häffner H, Schmidt-Kaler F, Hänsel W, et al. 2005 Appl. Phys. B 81 151Google Scholar

    [15]

    Harty T P, Allcock D T C, Ballance C J, et al. 2014 Phys. Rev. Lett. 113 220501Google Scholar

    [16]

    Epstein R J, Seidelin S, Leibfried D, et al. 2007 Phys. Rev. A 76 033411Google Scholar

    [17]

    Wesenberg J, Epstein R, Leibfried D, et al. 2007 Phys. Rev. A 76 053416Google Scholar

    [18]

    Hite D A, Colombe Y, Wilson A C, et al. 2012 Phys. Rev. Lett. 109 103001Google Scholar

    [19]

    Deslauriers L, Olmschenk S, Stick D, et al. 2006 Phys. Rev. Lett. 97 103007Google Scholar

    [20]

    Biercuk M J, Uys H, VanDevender A P, et al. 2009 Nature 458 996Google Scholar

    [21]

    Souza A M, Álvarez G A, Suter D 2011 Phys. Rev. Lett. 106 240501Google Scholar

    [22]

    Peng X H, Suter D, Lidar D A 2011 J. Phys. B 44 154003Google Scholar

    [23]

    Saeedi K, Simmons S, Salvail J Z, et al. 2013 Science 342 830Google Scholar

    [24]

    Zhong M J, Hedges M P, Ahlefeldt R L, et al. 2015 Nature 517 177Google Scholar

    [25]

    Khodjasteh K, Sastrawan J, Hayes D, et al. 2013 Nat. Commun. 4 2045Google Scholar

    [26]

    Soare A, Ball H, Hayes D, et al. 2014 Nat. Phys. 10 825Google Scholar

    [27]

    Cywiński L, Lutchyn R M, Nave C P, Das Sarma S 2008 Phys. Rev. B 77 174509Google Scholar

    [28]

    Uhrig G S 2008 New J. Phys. 10 083024Google Scholar

    [29]

    Pasini S, Uhrig G S 2010 Phys. Rev. A 81 012309Google Scholar

    [30]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [31]

    Hahn E L 1950 Phys. Rev. 94 580

    [32]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [33]

    Meiboom S, Gill D 1958 Rev. Sci. Instrum. 29 688Google Scholar

    [34]

    Uhrig G S 2007 Phys. Rev. Lett. 98 100504Google Scholar

    [35]

    Brown K R, Harrow A W, Chuang I L 2004 Phys. Rev. A 70 052318Google Scholar

    [36]

    Ryan C A, Hodges J S, Cory D G 2010 Phys. Rev. Lett. 105 200402Google Scholar

    [37]

    Kotler S, Akerman N, Glickman Y, Ozeri R 2013 Phys. Rev. Lett. 110 110503Google Scholar

    [38]

    Kotler S, Akerman N, Glickman Y, Keselman A, Ozeri R 2011 Nature 473 61Google Scholar

    [39]

    Knill E, Leibfried D, Reichle R, et al. 2008 Phys. Rev. A 77 012307Google Scholar

    [40]

    Wang Y, Um M, Zhang J H, et al. 2017 Nature Photon. 11 646Google Scholar

    [41]

    Kielpinski D, Kafri D, Wooley M J, et al. 2012 Phys. Rev. Lett. 108 130504Google Scholar

    [42]

    Daniilidis N, Gorman D J, Tian L, Häffner H 2013 New J. Phys. 15 073017Google Scholar

  • 图 1  实验装置和控制系统 (a) 同时囚禁${{}^{171}{\rm Yb}^+ }$离子和$ ^{138}{\rm Ba}^+ $离子的混合囚禁系统及相关能谱图; (b) 微波和激光信号的控制系统

    Fig. 1.  Experimental setup and control system: (a) Hybrid trapping system that traps $ ^{171}{\rm Yb}^+ $ and $ ^{138}{\rm Ba}^+ $ simultaneously; (b) control system for generating laser and microwave signals.

    图 2  动力学解耦脉冲序列 (a) CPMG方案; (b) $ {\rm KDD}_{xy} $方案

    Fig. 2.  Pulse sequence for dyanmical decoupling: (a) CPMG protocol; (b) ${\rm{KD}}{{\rm{D}}_{{xy}}}$ protocol.

    图 3  频谱分析仪测得的典型相位涨落噪声谱

    Fig. 3.  Typical phase noise measured by spectrum analyzer.

    图 4  (a) 执行包含$ N $个脉冲的动力学解耦序列, 不同的总演化时间$ T $对应的条纹对比度; (b) 通过分析图(a)中的数据得到的环境噪声谱

    Fig. 4.  (a) Ramsey contrasts depending on the total evolution time T for various numbers of pulses N in the dynamical decoupling sequence; (b) the noise spectra analized from the measured data in Fig. (a).

    图 5  序列保真度随序列长度的变化

    Fig. 5.  Sequence fidelity pl as a function of the sequence length l.

    图 6  测量单量子比特相干时间的脉冲序列

    Fig. 6.  Pulse sequences for measuring the single-qubit coherent time.

    图 7  单量子比特六个不同初态的相干时间, 其中$\left| \uparrow \right\rangle $$\left| \downarrow \right\rangle $, 对应的相干时间是(4740$ \pm $1760) s; 其他四个初态对应的相干时间为(667$ \pm $17) s; 图中的误差线代表标准差

    Fig. 7.  Single-qubit coherece time for six different initial states. For $\left| \uparrow \right\rangle $ and $\left| \downarrow \right\rangle $, the coherence time is (4740$ \pm $1760) s. For the other four initial states, the coherence time is (667$ \pm $17) s. The error bars are the standard deviation.

  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [3]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [4]

    Wiesner S 1983 ACM SIGACT News 15 78

    [5]

    Pastawski F, Yao N Y, Jiang L, Lukin M D, Cirac J I 2012 Proc. Natl. Acad. Sci. U.S.A. 109 16079Google Scholar

    [6]

    Nickerson N H, Fitzsimons J F, Benjamin S C 2014 Phys. Rev. X 4 041041Google Scholar

    [7]

    Kielpinski D, Monroe C, Wineland D J 2002 Nature 417 709Google Scholar

    [8]

    Blinov B B, Moehring D L, Duan L M, Monroe C 2004 Nature 428 153Google Scholar

    [9]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [10]

    Monroe C, Kim J 2013 Science 339 1164Google Scholar

    [11]

    Bollinger J, Heizen D, Itano W, et al. 1991 IEEE Trans. Instrum. Meas. 40 126Google Scholar

    [12]

    Fisk P, Sellars M, Lawn M, et al. 1995 IEEE Trans. Instrum. Meas. 44 113Google Scholar

    [13]

    Langer C, Ozeri R, Jost J, et al. 2005 Phys. Rev. Lett. 95 060502Google Scholar

    [14]

    Häffner H, Schmidt-Kaler F, Hänsel W, et al. 2005 Appl. Phys. B 81 151Google Scholar

    [15]

    Harty T P, Allcock D T C, Ballance C J, et al. 2014 Phys. Rev. Lett. 113 220501Google Scholar

    [16]

    Epstein R J, Seidelin S, Leibfried D, et al. 2007 Phys. Rev. A 76 033411Google Scholar

    [17]

    Wesenberg J, Epstein R, Leibfried D, et al. 2007 Phys. Rev. A 76 053416Google Scholar

    [18]

    Hite D A, Colombe Y, Wilson A C, et al. 2012 Phys. Rev. Lett. 109 103001Google Scholar

    [19]

    Deslauriers L, Olmschenk S, Stick D, et al. 2006 Phys. Rev. Lett. 97 103007Google Scholar

    [20]

    Biercuk M J, Uys H, VanDevender A P, et al. 2009 Nature 458 996Google Scholar

    [21]

    Souza A M, Álvarez G A, Suter D 2011 Phys. Rev. Lett. 106 240501Google Scholar

    [22]

    Peng X H, Suter D, Lidar D A 2011 J. Phys. B 44 154003Google Scholar

    [23]

    Saeedi K, Simmons S, Salvail J Z, et al. 2013 Science 342 830Google Scholar

    [24]

    Zhong M J, Hedges M P, Ahlefeldt R L, et al. 2015 Nature 517 177Google Scholar

    [25]

    Khodjasteh K, Sastrawan J, Hayes D, et al. 2013 Nat. Commun. 4 2045Google Scholar

    [26]

    Soare A, Ball H, Hayes D, et al. 2014 Nat. Phys. 10 825Google Scholar

    [27]

    Cywiński L, Lutchyn R M, Nave C P, Das Sarma S 2008 Phys. Rev. B 77 174509Google Scholar

    [28]

    Uhrig G S 2008 New J. Phys. 10 083024Google Scholar

    [29]

    Pasini S, Uhrig G S 2010 Phys. Rev. A 81 012309Google Scholar

    [30]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [31]

    Hahn E L 1950 Phys. Rev. 94 580

    [32]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [33]

    Meiboom S, Gill D 1958 Rev. Sci. Instrum. 29 688Google Scholar

    [34]

    Uhrig G S 2007 Phys. Rev. Lett. 98 100504Google Scholar

    [35]

    Brown K R, Harrow A W, Chuang I L 2004 Phys. Rev. A 70 052318Google Scholar

    [36]

    Ryan C A, Hodges J S, Cory D G 2010 Phys. Rev. Lett. 105 200402Google Scholar

    [37]

    Kotler S, Akerman N, Glickman Y, Ozeri R 2013 Phys. Rev. Lett. 110 110503Google Scholar

    [38]

    Kotler S, Akerman N, Glickman Y, Keselman A, Ozeri R 2011 Nature 473 61Google Scholar

    [39]

    Knill E, Leibfried D, Reichle R, et al. 2008 Phys. Rev. A 77 012307Google Scholar

    [40]

    Wang Y, Um M, Zhang J H, et al. 2017 Nature Photon. 11 646Google Scholar

    [41]

    Kielpinski D, Kafri D, Wooley M J, et al. 2012 Phys. Rev. Lett. 108 130504Google Scholar

    [42]

    Daniilidis N, Gorman D J, Tian L, Häffner H 2013 New J. Phys. 15 073017Google Scholar

  • [1] 董亮, 陈琳瑜, 王兴昌, 梁馨云, 左瀛, 陈洁菲. 基于冷原子磁场调控的光量子存储. 物理学报, 2026, 75(4): . doi: 10.7498/aps.75.20251399
    [2] 董元章, 何思文, 邓志姣, 李沛东, 陈亮, 冯芒. 量子区域内单离子声子激光态的研究. 物理学报, 2025, 74(19): 193701. doi: 10.7498/aps.74.20250603
    [3] 肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋. 聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁. 物理学报, 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [4] 张乾煜, 白文丽, 敖致远, 丁彦皓, 彭文翠, 何胜国, 童昕. 基于冷分子离子HD+振转光谱的精密测量. 物理学报, 2024, 73(20): 203301. doi: 10.7498/aps.73.20241064
    [5] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [6] 张治达, 易康源, 陈远珍, 燕飞. 多能级系统中的动力学解耦. 物理学报, 2023, 72(10): 100305. doi: 10.7498/aps.72.20222398
    [7] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [8] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [9] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [10] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [11] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [12] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动. 物理学报, 2017, 66(23): 233701. doi: 10.7498/aps.66.233701
    [13] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动. 物理学报, 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [14] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, 2010, 59(3): 1780-1785. doi: 10.7498/aps.59.1780
    [15] 艾凌艳, 杨 健, 张智明. 基于二维囚禁离子实现受控非门、交换门和相位门. 物理学报, 2008, 57(9): 5589-5592. doi: 10.7498/aps.57.5589
    [16] 陈文钦, 海文华, 李 辉, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动. 物理学报, 2007, 56(3): 1305-1312. doi: 10.7498/aps.56.1305
    [17] 汪仲清, 段昌奎, 安广雷. 囚禁离子的非线性Jaynes-Cummings模型及其布居数反转演化. 物理学报, 2006, 55(7): 3438-3442. doi: 10.7498/aps.55.3438
    [18] 曲照军, 柳盛典, 杨传路. 囚禁离子与单模场的相互作用. 物理学报, 2005, 54(3): 1156-1161. doi: 10.7498/aps.54.1156
    [19] 李飞, 海文华. 激光脉冲作用下囚禁离子的规则与混沌运动. 物理学报, 2004, 53(5): 1309-1315. doi: 10.7498/aps.53.1309
    [20] 方卯发, 刘翔. 驻波激光场中囚禁离子内外自由度的周期纠缠. 物理学报, 2001, 50(12): 2363-2368. doi: 10.7498/aps.50.2363
计量
  • 文章访问数:  21174
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-19
  • 修回日期:  2018-10-18
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回