搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响

文林 梁毅 周晶 余鹏 夏雷 牛连斌 张晓斐

引用本文:
Citation:

线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响

文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐

Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates

Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei
PDF
HTML
导出引用
  • 利用变分近似及基于Gross-Pitaevskii方程的直接数值模拟方法, 研究了自旋-轨道耦合玻色-爱因斯坦凝聚体中线性塞曼劈裂对亮孤子动力学的影响, 发现线性塞曼劈裂将导致体系具有两个携带有限动量的静态孤子, 以及它们在微扰下存在一个零能的Goldstone激发模和一个频率与线性塞曼劈裂有关的谐振激发模. 同时给出了描述孤子运动的质心坐标表达式, 发现线性塞曼劈裂明显影响孤子的运动速度和振荡周期.
    Solitons as self-supported solitary waves are one of the most fundamental objects in nonlinear science. With the realization of Bose-Einstein condensate, matter-wave solitons have aroused enormous interest due to their potential applications in atomic transport and atomic interferometer. In recent years, the artificial spin-orbit coupling has been realized in ultracold atoms, thus providing a new platform to study the nonlinear matter wave solitons under a gauge field, and a variety of novel soliton phenomena have been successively predicted. In this paper, we analyze the effects of linear Zeeman splitting on the dynamics of bright-bright solitons in spin-orbit coupled two-component Bose-Einstein condensate, via the variational approximation and the numerical simulation of Gross-Pitaevskii (GP) equations. For the SU(2) spin-rotational invariant attractive atomic interaction in a uniform case without external trap, we take a hyperbolic secant function as the variational Ansatz for bright soliton in variational approximation, and derive the Euler-Lagrange equations describing the evolution of the Ansatz parameters. By solving the time-independent Euler-Lagrange equations, we find two stationary solitons each with a finite momentum for a weak spin-orbit coupling due to the linear Zeeman splitting. Linearizing the Euler-Lagrange equations around these stationary solitons, we further obtain a zero-energy Goldstone mode and an oscillation mode with frequency related to linear Zeeman splitting: the former indicates that the continuous translational symmetry of the stationary solitons will be broken under a perturbation, and the later shows that the stationary solitons will oscillate under a perturbation. Furthermore, by solving the time-dependent Euler-Lagrange equations, we also obtain the exact full dynamical solutions of Ansatz parameters, and observe that the linear Zeeman splitting affects the period and velocity of soliton's oscillation and linear motion, which may provide a new method to control the dynamics of solitons. All the variational calculations are also confirmed directly by the numerical simulation of GP equations.
      通信作者: 张晓斐, xfzhang@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11875010, 11504037, 11775253, 11504038, 61874016, 11504035)、重庆市教委科学技术研究项目(批准号: KJ1500411, KJ1600307)、 重庆市前沿与应用基础研究计划一般项目(批准号: cstc2015jcyjA00013)、 重庆市高等教育创新群体项目(批准号: CXTDX201601016)和重庆市科技领军人才支持计划(批准号: cstc2018kjcxljrc0050)资助的课题.
      Corresponding author: Zhang Xiao-Fei, xfzhang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875010, 11504037, 11775253, 11504038, 61874016, 11504035), and the Foundation of Education Committees of Chongqing (Grant Nos. KJ1500411, KJ1600307), the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2015jcyjA00013), the Foundation for the Creative Research Groups of Higher Education of Chongqing (Grant No. CXTDX201601016), and the Chongqing Science and Technology Innovation Leading Talents Support Plan(Grant No. cstc2018kjcxljrc0050).
    [1]

    Malomed B A 2006 Soliton Management in Periodic Systems (Vol. 1) (Berlin: Springer) p1

    [2]

    Kevrekidis P G, Frantzeskakis D J, Carretero-Gonzalez R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Vol. 1)(Berlin: Springer) pp43−96

    [3]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [4]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [5]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [6]

    Cornish S L, Thompson S T, Wieman C E 2006 Phys. Rev. Lett. 96 170401Google Scholar

    [7]

    Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S, Cornish S L 2013 Nat. Commun. 4 1865Google Scholar

    [8]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [9]

    Yefsah T, Sommer A T, Ku M J H, Cheuk L W, Ji W, Bakr W S, Zwierlein M W 2013 Nature 499 426Google Scholar

    [10]

    Ku M J H, Ji W, Mukherjee B, Guardado-Sanchez E, Cheuk L W, Yefsah T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [11]

    张蔚曦, 张志强, 冉茂武, 欧永康, 何章明 2014 物理学报 63 200507Google Scholar

    Zhang W X, Zhang Z Q, Ran M W, Ou Y K, He Z M 2014 Acta Phys. Sin. 63 200507Google Scholar

    [12]

    Guo X H, Xu T F, Liu C S 2018 Chin. Rhys. B 27 060307

    [13]

    Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar

    [14]

    Lin Y J, Jiménez-GarcÍa K, Spielman I B 2011 Nature 471 83Google Scholar

    [15]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [16]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [17]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [18]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [19]

    Zhou X, Li Y, Cai Z, Wu C J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001Google Scholar

    [20]

    Xu Y, Zhang Y, Wu B 2013 Phys. Rev. A 87 013614Google Scholar

    [21]

    Achilleos V, Frantzeskakis D J, Kevrekidis P G, Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101Google Scholar

    [22]

    Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J, Schmelcher P 2013 Europhys. Lett. 103 20002Google Scholar

    [23]

    Kartashov Y V, Konotop V V, Abdullaev F K 2013 Phys. Rev. Lett. 111 060402Google Scholar

    [24]

    Liu Y K, Yang S J 2014 Europhys. Lett. 108 30004Google Scholar

    [25]

    Kartashov Y V, Konotop V V, Zezyulin D A 2014 Phys. Rev. A 90 063621Google Scholar

    [26]

    Gautam S, Adhikari S K 2015 Laser Phys. Lett. 12 045501Google Scholar

    [27]

    Gautam S, Adhikari S K 2015 Phys. Rev. A 91 063617Google Scholar

    [28]

    Zhang Y, Xu Y, Busch T 2015 Phys. Rev. A 91 043629Google Scholar

    [29]

    Peotta S, Mireles F, Di Ventra M 2015 Phys. Rev. A 91 021601Google Scholar

    [30]

    Sakaguchi H, Li B, Malomed B A 2014 Phys. Rev. E 89 032920Google Scholar

    [31]

    Sakaguchi H, Sherman E Y, Malomed B A 2016 Phys. Rev. E 94 032202Google Scholar

    [32]

    Salasnich L, Cardoso W B, Malomed B A 2014 Phys. Rev. A 90 033629Google Scholar

    [33]

    Sakaguchi H, Malomed B A 2014 Phys. Rev. E 90 062922Google Scholar

    [34]

    Lobanov V E, Kartashov Y V, Konotop V V 2014 Phys. Rev. Lett. 112 180403Google Scholar

    [35]

    Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253902Google Scholar

    [36]

    Beličev P P, Gligorić G, Petrovic J, Maluckov A, Hadžievski L, Malomed B A 2015 J. Phys. B 48 065301Google Scholar

    [37]

    Li Y, Liu Y, Fan Z, Pang W, Fu S, Malomed B A 2017 Phys. Rev. A 95 063613Google Scholar

    [38]

    Liao B, Li S, Huang C, Luo Z, Pang W, Tan H, Malomed B A, Li Y 2017 Phys. Rev. A 96 043613Google Scholar

    [39]

    Sakaguchi H, Malomed B A 2018 Phys. Rev. A 97 013607Google Scholar

    [40]

    Zhong R, Chen Z, Huang C, Luo Z, Tan H, Malomed B A, Li Y 2018 Front. Phys. 13 130311Google Scholar

    [41]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [42]

    Li Y E, Xue J K 2016 Chin. Phys. Lett. 33 100502Google Scholar

    [43]

    Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A, Ji A C 2016 Phys. Rev. A 94 061602Google Scholar

    [44]

    Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q, Ji A C 2018 Anns. Phys. 390 181

    [45]

    Sakaguchi H, Malomed B A 2017 Phys. Rev. A 96 043620Google Scholar

    [46]

    Kartashov Y V, Konotop V V 2017 Phys. Rev. Lett. 118 190401Google Scholar

    [47]

    Wen L, Sun Q, Wang H Q, Ji A C, Liu W M 2012 Phys. Rev. A 86 043602Google Scholar

    [48]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [49]

    Gong M, Chen G, Jia S T, Zhang C 2012 Phys. Rev. Lett. 109 105302Google Scholar

    [50]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X, Guo G, Zhang C 2013 Nat. Commun. 4 2710Google Scholar

    [51]

    Zhang W, Yi W 2013 Nat. Commun. 4 2711Google Scholar

    [52]

    Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619Google Scholar

    [53]

    宗丰德, 杨阳, 张解放 2009 物理学报 58 3670Google Scholar

    Zong F D, Yang Y, Zhang J F 2009 Acta Phys. Sin. 58 3670Google Scholar

    [54]

    Alotaibi M O D, Carr L D 2017 Phys. Rev. A 96 013601Google Scholar

  • 图 1  (a),(b)$ \varOmega/k_{\rm R}^2 = 0.5 $时固定点解$ \tilde{\theta} $$ \tilde{k} $随线性塞曼劈裂$ \varepsilon $的变化; (c),(d)$ \varOmega/k_{\rm R}^2 = 1.5 $时固定点解$ \tilde{\theta} $$ \tilde{k} $随线性塞曼劈裂$ \varepsilon $的变化; (e)$ \varOmega/k_{\rm R}^2<1 $时临界值$ \varepsilon_{\rm c}$$ \varOmega $的变化

    Fig. 1.  (a) and (b) show the $ \tilde{\theta} $ and $ \tilde{k} $ change with $ \varepsilon $ for $ \varOmega/k_{\rm R}^2 = 0.5 $; (c) and (d) display $ \tilde{\theta} $ and $ \tilde{k} $ change with $ \varepsilon $ for $ \varOmega/k_{\rm R}^2 = 1.5 $; (e) shows the critical value $ \varepsilon_{\rm c} $ versus $ \varOmega $ for $ \varOmega/k_{{\rm R}}^2<1 $.

    图 2  (a)和(b)分别展示$ k_{\rm R} = 0.2\varOmega $$ k_{\rm R} = 1.5\varOmega $时, 变分静态孤子解(圆圈)与GP方程(2)静态孤子的数值解(实线)的对比, 其他参数取值为$ \varepsilon = 0.3 $, $ \varOmega = 0.5 $$ g = -10 $; (c)—(f)分别为(a)和(b)中的变分静态孤子解作为初始条件在含时GP方程中的动力学演化

    Fig. 2.  (a), (b) show the comparisons between the variationally predicted stationary soliton solutions (circles) and the numerical solutions (solid lines) of stationary solitons of GP equation (2) for $k_{\rm R}=0.2\varOmega$ and $k_{\rm R}=1.5\varOmega$ with $\varOmega=0.5$, respectively. The other parameters are $\varepsilon=0.3$ and $g=-10$;(c)−(f) are the dynamical evolutions of solitons in time-dependent GP simulations by using the variationally predicted stationary soliton solutions in (a) and (b) as initial wave functions, respectively

    图 3  $ \varOmega/k_{\rm R}^2 = 0.5$ (a)和$ \varOmega/k_{\rm R}^2 = 1.5 $(b)时, 频率$ \omega_{\pm} = \pm 2\varOmega/\sin\left(2\tilde{\theta}\right) $随线性塞曼劈裂强度$ \varepsilon $的变化

    Fig. 3.  The frequency $\omega_{\pm}=\pm 2\varOmega/\sin\left(2\tilde{\theta}\right)$ changes with $\varepsilon$ for $\varOmega/k_{\rm R}^2=0.5$ and $\varOmega/k_{\rm R}^2=1.5$ in (a) and (b), respectively.

    图 4  (a)—(f)初始值为$ \theta_{0} = \dfrac{{\text{π}}}{4} $, $ \varphi_{-, 0} = 0 $$ k = 0 $的孤子动力学演化 (a)—(c) $ \varepsilon = 0 $, (d)—(f) $ \varepsilon = 0.35 $; 孤子振荡周期$ T(g) $及速度$ v(h) $随线性塞曼劈裂的变化

    Fig. 4.  (a)−(f) show the dynamical evolutions of initially balanced solitons with $\theta_0=\dfrac{{\text{π}}}{4}$, $k=0$ and $\varphi_{-, 0}=0$ in GP simulations, $\varepsilon=0$ in (a)−(c), and $\varepsilon=0.35$ in (d)−(f); oscillation period $T(g) $ and moving velocity $v(h) $ of solitons change with the linear Zeeman splitting.

  • [1]

    Malomed B A 2006 Soliton Management in Periodic Systems (Vol. 1) (Berlin: Springer) p1

    [2]

    Kevrekidis P G, Frantzeskakis D J, Carretero-Gonzalez R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Vol. 1)(Berlin: Springer) pp43−96

    [3]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [4]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [5]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [6]

    Cornish S L, Thompson S T, Wieman C E 2006 Phys. Rev. Lett. 96 170401Google Scholar

    [7]

    Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S, Cornish S L 2013 Nat. Commun. 4 1865Google Scholar

    [8]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [9]

    Yefsah T, Sommer A T, Ku M J H, Cheuk L W, Ji W, Bakr W S, Zwierlein M W 2013 Nature 499 426Google Scholar

    [10]

    Ku M J H, Ji W, Mukherjee B, Guardado-Sanchez E, Cheuk L W, Yefsah T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [11]

    张蔚曦, 张志强, 冉茂武, 欧永康, 何章明 2014 物理学报 63 200507Google Scholar

    Zhang W X, Zhang Z Q, Ran M W, Ou Y K, He Z M 2014 Acta Phys. Sin. 63 200507Google Scholar

    [12]

    Guo X H, Xu T F, Liu C S 2018 Chin. Rhys. B 27 060307

    [13]

    Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar

    [14]

    Lin Y J, Jiménez-GarcÍa K, Spielman I B 2011 Nature 471 83Google Scholar

    [15]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [16]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [17]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [18]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [19]

    Zhou X, Li Y, Cai Z, Wu C J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001Google Scholar

    [20]

    Xu Y, Zhang Y, Wu B 2013 Phys. Rev. A 87 013614Google Scholar

    [21]

    Achilleos V, Frantzeskakis D J, Kevrekidis P G, Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101Google Scholar

    [22]

    Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J, Schmelcher P 2013 Europhys. Lett. 103 20002Google Scholar

    [23]

    Kartashov Y V, Konotop V V, Abdullaev F K 2013 Phys. Rev. Lett. 111 060402Google Scholar

    [24]

    Liu Y K, Yang S J 2014 Europhys. Lett. 108 30004Google Scholar

    [25]

    Kartashov Y V, Konotop V V, Zezyulin D A 2014 Phys. Rev. A 90 063621Google Scholar

    [26]

    Gautam S, Adhikari S K 2015 Laser Phys. Lett. 12 045501Google Scholar

    [27]

    Gautam S, Adhikari S K 2015 Phys. Rev. A 91 063617Google Scholar

    [28]

    Zhang Y, Xu Y, Busch T 2015 Phys. Rev. A 91 043629Google Scholar

    [29]

    Peotta S, Mireles F, Di Ventra M 2015 Phys. Rev. A 91 021601Google Scholar

    [30]

    Sakaguchi H, Li B, Malomed B A 2014 Phys. Rev. E 89 032920Google Scholar

    [31]

    Sakaguchi H, Sherman E Y, Malomed B A 2016 Phys. Rev. E 94 032202Google Scholar

    [32]

    Salasnich L, Cardoso W B, Malomed B A 2014 Phys. Rev. A 90 033629Google Scholar

    [33]

    Sakaguchi H, Malomed B A 2014 Phys. Rev. E 90 062922Google Scholar

    [34]

    Lobanov V E, Kartashov Y V, Konotop V V 2014 Phys. Rev. Lett. 112 180403Google Scholar

    [35]

    Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253902Google Scholar

    [36]

    Beličev P P, Gligorić G, Petrovic J, Maluckov A, Hadžievski L, Malomed B A 2015 J. Phys. B 48 065301Google Scholar

    [37]

    Li Y, Liu Y, Fan Z, Pang W, Fu S, Malomed B A 2017 Phys. Rev. A 95 063613Google Scholar

    [38]

    Liao B, Li S, Huang C, Luo Z, Pang W, Tan H, Malomed B A, Li Y 2017 Phys. Rev. A 96 043613Google Scholar

    [39]

    Sakaguchi H, Malomed B A 2018 Phys. Rev. A 97 013607Google Scholar

    [40]

    Zhong R, Chen Z, Huang C, Luo Z, Tan H, Malomed B A, Li Y 2018 Front. Phys. 13 130311Google Scholar

    [41]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [42]

    Li Y E, Xue J K 2016 Chin. Phys. Lett. 33 100502Google Scholar

    [43]

    Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A, Ji A C 2016 Phys. Rev. A 94 061602Google Scholar

    [44]

    Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q, Ji A C 2018 Anns. Phys. 390 181

    [45]

    Sakaguchi H, Malomed B A 2017 Phys. Rev. A 96 043620Google Scholar

    [46]

    Kartashov Y V, Konotop V V 2017 Phys. Rev. Lett. 118 190401Google Scholar

    [47]

    Wen L, Sun Q, Wang H Q, Ji A C, Liu W M 2012 Phys. Rev. A 86 043602Google Scholar

    [48]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [49]

    Gong M, Chen G, Jia S T, Zhang C 2012 Phys. Rev. Lett. 109 105302Google Scholar

    [50]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X, Guo G, Zhang C 2013 Nat. Commun. 4 2710Google Scholar

    [51]

    Zhang W, Yi W 2013 Nat. Commun. 4 2711Google Scholar

    [52]

    Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619Google Scholar

    [53]

    宗丰德, 杨阳, 张解放 2009 物理学报 58 3670Google Scholar

    Zong F D, Yang Y, Zhang J F 2009 Acta Phys. Sin. 58 3670Google Scholar

    [54]

    Alotaibi M O D, Carr L D 2017 Phys. Rev. A 96 013601Google Scholar

  • [1] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [2] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [3] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [4] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [5] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [6] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [7] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [8] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [9] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [10] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [11] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [12] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [13] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [14] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [15] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [16] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [17] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [18] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿. 物理学报, 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [19] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [20] 何章明, 王登龙. 凝聚体中亮孤子和暗孤子的交替演化. 物理学报, 2007, 56(6): 3088-3091. doi: 10.7498/aps.56.3088
计量
  • 文章访问数:  8439
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-02-17
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-20

/

返回文章
返回