搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器

窦微 浦双双 牛娜 曲大鹏 孟祥峻 赵岭 郑权

引用本文:
Citation:

双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器

窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权

Combined dual-wavelength laser diode beam end-pumped single longitudinal mode Pr3+:LiYF4 360 nm ultraviolet laser

Dou Wei, Pu Shuang-Shuang, Niu Na, Qu Da-Peng, Meng Xiang-Jun, Zhao Ling, Zheng Quan
PDF
HTML
导出引用
  • 报道了一种双波长半导体激光二极管(LD)合束端面抽运掺镨氟化钇锂晶体(Pr3+:LiYF4)全固态、单纵模360 nm紫外激光器. 该激光器采用V形折叠腔结构, 利用反射式体布拉格光栅作为波长选择反射镜来压缩光谱线宽, 与法布里-珀罗(F-P)标准具组合构成窄带滤波器进行单纵模的有效选取, 通过I 类位相匹配切割的倍频晶体三硼酸锂对腔内720 nm基频光进行倍频. 在444 nm LD输出功率为1200 mW和469 nm LD输出功率为1400 mW时, 合束抽运获得了功率为112 mW的连续单纵模360 nm紫外激光稳定输出, 光-光转换效率为4.3%. 测量结果表明, 边摸抑制比大于60 dB, 4 h功率均方根值稳定性优于0.5%, 1 h频率漂移小于220 MHz, 激光振幅噪声小于0.5%.
    In recent years, all-solid-state ultraviolet lasers have had widely potential applications in the fields of spectroscopy, biological analysis, precision manufacturing, optical data storage, high-resolution printing, medicine and lithography. The good monochrome of all-solid-state ultraviolet laser can improve the accuracy of spectral absorption measurement when used to detect specific proteins and reduce the laser spot diameter when used for high density data storage or acousto-optic deflector. In this paper, a combined dual-wavelength laser diode (LD) beam end-pumped single longitudinal mode Pr3+:LiYF4 all-solid-state UV laser at 360 nm is presented. A V-folded cavity structure is used in the laser, which consists of a reflective volume Bragg grating (RBG) and a Fabry-Perot (F-P) etalon. The RBG is used as a wavelength selection and resonator reflector to narrow the width of spectral line. The F-P etalon is hybrid in the cavity, serving as a narrow-band filter, to achieve the single longitudinal mode. The lithium triborate crystal with critical type-I phase matching at room temperature is used for implementing the second-harmonic generation of the fundamental 720 nm laser and obtaining an efficient and compact ultraviolet laser at 360 nm. The optical resonator is simulated and analyzed by MATLAB software. Two experiments are conducted to compare the accuracy of central wavelength tuning by changing the temperature of F-P etalon and the angle of F-P etalon. The result shows that the change temperature of F-P etalon can achieve 0.165 pm/℃, showing that it is a better method. The structure of the laser is simplified and the anti-interference capability is improved in this way. It is different from mode competition method and the stability of single longitudinal mode laser output is increased. When the output power of LD at 444 nm is 1200 mW and that of LD at 469 nm is 1400 mW, a single longitudinal mode CW UV laser at 360 nm with output power as high as 112 mW is achieved. The optical-to-optical conversion efficiency is 4.3%, and the longitudinal linewidth of laser is 30 MHz. The measurements show that the edge suppression ratio is greater than 60 dB, the stability of root mean square (RMS) of output power in 4 h is better than 0.5%, the frequency shift in 1h is better than 220 MHz, and amplitude noise is less than 0.5%.
      通信作者: 窦微, douwei@cnilaser.com
      Corresponding author: Dou Wei, douwei@cnilaser.com
    [1]

    Chen M, Wang Z C, Wang B S, Yang F, Zhang G C, Zhang S J, Zhang F F, Zhang X W, Zong N, Wang Z M, Bo Y, Peng Q J, Cui D F, Wu Y C, Xu Z Y 2016 J. Lumin. 172 254Google Scholar

    [2]

    毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 物理学报 64 014203Google Scholar

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203Google Scholar

    [3]

    Mao Y F, Zhang H L, Sang S H, Zhang X, Yu X L, Xing J C, Xin J G, Jiang Y 2015 Chin. Phys. Lett. 32 094201-1

    [4]

    Cai Z P, Qu B, Cheng Y J, Luo S Y, Xu B, Xu H Y, Luo Z Q, Camy P, Doualan J L, Moncorgé R 2014 Opt. Express 22 31722Google Scholar

    [5]

    Camy P, Xu B, Doualan J L, Moncorgé R 2011 Advanced Solid-State Photonics Istanbul, Turkey, February 13−16, 2011 pATuB10

    [6]

    Luo S Y, Yan X G, Xu B, Xiao L P, Xu H, Cai Z P, Weng J 2018 Opt. Commun. 406 61Google Scholar

    [7]

    刘哲 2013 博士学位论文 (福建: 厦门大学)

    Liu Z 2013 Ph. D. Dissertation (Fujian: Xiamen University) (in Chinese)

    [8]

    Akbari R, Major A 2013 Laser Phys. 23 035401Google Scholar

    [9]

    Ostroumov V, Seelert W, Hunziker L, Ihli C, Richter A, Heumann E, Huber G 2007 Solid State Lasers XVI: Technology and Devices San Jose, USA, January 22−25, 2007 p645103-1

    [10]

    Zhang C M, Yu W X, Zhang C G, Yao Y, Zhu P F, Song P, Bai L 2015 Opt. Spectrosc. 118 998Google Scholar

    [11]

    Tu X, Wu X, Li M, Liu L Y, Xu L 2012 Opt. Express 20 19996Google Scholar

    [12]

    谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦 2016 物理学报 65 094203Google Scholar

    Xie S Y, Zhang X F, Yang C L, Le X Y, Bo Y, Cui D F, Xu Z Y 2016 Acta Phys. Sin. 65 094203Google Scholar

    [13]

    George J, Oak S M, Singh B P 2010 Opt. Laser Technol. 42 192Google Scholar

    [14]

    Yao B, Jing W, Dai T, Ju Y, Wang Y 2017 Opt. Express 25 27671Google Scholar

    [15]

    Nunez P M, Wetter N U, Zondy J J, Cruz F C 2013 Laser Phys. 23 025801Google Scholar

    [16]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2010 Opt. Express 18 12161Google Scholar

    [17]

    Dai T Y, Wu J, Ju L, Zhang Z G, Xu L W, Yao B Q, Wang Y Z 2016 Infrared Phys. Technol. 77 149Google Scholar

    [18]

    Qian L M, Ren D M, Zhao W J, Liu Y Y, Qu Y C, Bai Y, Chen Z L 2012 Laser Phys. 22 708Google Scholar

    [19]

    Shie N C, Hsieh W F, Shy J T 2011 Opt. Express 19 21109Google Scholar

    [20]

    白扬博, 向望华, 祖鹏, 张贵忠 2012 物理学报 61 214208Google Scholar

    Bai Y B, Xiang W H, Zu P, Zhang G Z 2012 Acta Phys. Sin. 61 214208Google Scholar

    [21]

    Qu B, Xu B, Luo S, Cheng Y, Xu H, Cai Z, Camy P, Doualan J, Moncorgé R 2015 IEEE Photon. Technol. Lett. 27 333Google Scholar

    [22]

    Xu B, Liu Z, Xu H, Cai Z, Zeng C, Huang S, Yan Y, Wang F, Camy P, Doualan J L, Braud A, Moncorgé R 2013 Opt. Commun. 305 96Google Scholar

    [23]

    Luo S, Yan X, Cui Q, Xu B, Xu H, Cai Z 2016 Opt. Commun. 380 357Google Scholar

    [24]

    Fibrich M, Šulc J, Jelínková H 2016 Solid State Lasers XXV: Technology and Devices San Francisco, United States, February 15−18, 2016 p97261E-1

    [25]

    Fibrich M, Jelínková H, Šulc J, Nejezchleb K, Škoda V 2010 Solid State Lasers XIX: Technology and Devices San Francisco, United States, February 15−18, 2010 p757828-1

    [26]

    Gün T, Metz P, Huber G 2011 Appl. Phys. Lett. 99 92

    [27]

    Metz P W, Reichert F, Moglia F, Müller S, Marzahl D T, Kränkel C, Huber G 2014 Opt. Lett. 39 3193Google Scholar

    [28]

    Liu Z, Cai Z P, Huang S L, Zeng C H, Meng Z Y, Bu Y K, Luo Z Q, Xu B, Xu H Y, Ye C C, Stareki F, Camy P, Moncorgé R 2013 J. Opt. Soc. Am. B 30 302Google Scholar

  • 图 1  选模原理图

    Fig. 1.  Principle of the longitudinal mode selection.

    图 2  Pr3+:LiYF4晶体对444 nm和469 nm以及两者加和的吸收效率曲线

    Fig. 2.  Absorption efficiency curves of Pr3+:LiYF4 crystal for 444 nm LD and 469 nm LD and their hybrid.

    图 3  全固态单纵模360 nm紫外激光器

    Fig. 3.  All solid state single longitudinal mode 360 nm UV laser.

    图 4  选模装置 (a) F-P标准具控温装置; (b) F-P标准具角度变换装置

    Fig. 4.  Longitudinal mode selection device: (a) Temperature control device for F-P etalon; (b) control device for F-P etalon angle.

    图 5  谐振腔稳定性分析 (a) 晶体热焦距Rth取300 mm时, 腔内两个束腰半径模拟图; (b) 谐振腔稳定参数G随热焦距Rth的变化

    Fig. 5.  Stability analysis of optical resonator: (a) Simulation ofbeam waist radii inside Pr3+:LiYF4 and LBO in the resonant cavity when the thermal focal length is 300 mm; (b) the variation curve of the stability parameter G of the resonator with the thermal focal length of the crystal.

    图 6  晶体热焦距Rth分别为200, 300, 400 mm时, Pr3+:LiYF4和LBO晶体内束腰半径随着LBO晶体与M1之间距离的变化情况

    Fig. 6.  The beam waist radii inside Pr3+:LiYF4 and LBO of the resonator vary with the distance between M1 and the LBO crystal when thermal focal length of the crystal is 200, 300 and 400 mm.

    图 7  720 nm激光中心波长调谐 (a) 中心波长随F-P标准具温度及厚度的变化; (b) 中心波长随PZT电压及F-P标准具角度的变化

    Fig. 7.  Tuning of 720 nm laser center wavelength: (a) The central wavelength vary with the temperature and thickness of F-P etalon; (b) the central wavelength vary with the angle of the PZT voltage and F-P etalon.

    图 8  360 nm单纵模激光输出功率相对于入射抽运功率 (444 nm与469 nm合束) 的变化

    Fig. 8.  Variation curve of output power of single longitudinal mode 360 nm laser with respect to pump power (combining LD @ 444 nm and LD @ 469 nm).

    图 10  光束质量M2因子

    Fig. 10.  M2 factor of laser beam.

    图 9  远场光斑

    Fig. 9.  Farfield laser facular profile.

    图 12  360 nm激光光谱

    Fig. 12.  Spectrum of the single longitudinal mode 360 nm UV laser.

    图 11  中心频率及其稳定性

    Fig. 11.  Center frequency and its stability.

    表 1  Pr3+:LiYF4晶体蓝光波段峰值吸收截面(室温)

    Table 1.  Peak absorption cross section of blue light in Pr3+:LiYF4 crystal (room temperature).

    Peak wavelength $\lambda $/nmAbsorption cross section ${\sigma _{\rm{a}}}$/10-20 cm2PolarizationCorresponding transitionLine width/nm
    4449.0${\text{π}}$3H43P21.8
    4696.5${\text{π}}$3H43P1+1I60.9
    47921.7${\text{π}}$3H43P00.5
    下载: 导出CSV
  • [1]

    Chen M, Wang Z C, Wang B S, Yang F, Zhang G C, Zhang S J, Zhang F F, Zhang X W, Zong N, Wang Z M, Bo Y, Peng Q J, Cui D F, Wu Y C, Xu Z Y 2016 J. Lumin. 172 254Google Scholar

    [2]

    毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 物理学报 64 014203Google Scholar

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203Google Scholar

    [3]

    Mao Y F, Zhang H L, Sang S H, Zhang X, Yu X L, Xing J C, Xin J G, Jiang Y 2015 Chin. Phys. Lett. 32 094201-1

    [4]

    Cai Z P, Qu B, Cheng Y J, Luo S Y, Xu B, Xu H Y, Luo Z Q, Camy P, Doualan J L, Moncorgé R 2014 Opt. Express 22 31722Google Scholar

    [5]

    Camy P, Xu B, Doualan J L, Moncorgé R 2011 Advanced Solid-State Photonics Istanbul, Turkey, February 13−16, 2011 pATuB10

    [6]

    Luo S Y, Yan X G, Xu B, Xiao L P, Xu H, Cai Z P, Weng J 2018 Opt. Commun. 406 61Google Scholar

    [7]

    刘哲 2013 博士学位论文 (福建: 厦门大学)

    Liu Z 2013 Ph. D. Dissertation (Fujian: Xiamen University) (in Chinese)

    [8]

    Akbari R, Major A 2013 Laser Phys. 23 035401Google Scholar

    [9]

    Ostroumov V, Seelert W, Hunziker L, Ihli C, Richter A, Heumann E, Huber G 2007 Solid State Lasers XVI: Technology and Devices San Jose, USA, January 22−25, 2007 p645103-1

    [10]

    Zhang C M, Yu W X, Zhang C G, Yao Y, Zhu P F, Song P, Bai L 2015 Opt. Spectrosc. 118 998Google Scholar

    [11]

    Tu X, Wu X, Li M, Liu L Y, Xu L 2012 Opt. Express 20 19996Google Scholar

    [12]

    谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦 2016 物理学报 65 094203Google Scholar

    Xie S Y, Zhang X F, Yang C L, Le X Y, Bo Y, Cui D F, Xu Z Y 2016 Acta Phys. Sin. 65 094203Google Scholar

    [13]

    George J, Oak S M, Singh B P 2010 Opt. Laser Technol. 42 192Google Scholar

    [14]

    Yao B, Jing W, Dai T, Ju Y, Wang Y 2017 Opt. Express 25 27671Google Scholar

    [15]

    Nunez P M, Wetter N U, Zondy J J, Cruz F C 2013 Laser Phys. 23 025801Google Scholar

    [16]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2010 Opt. Express 18 12161Google Scholar

    [17]

    Dai T Y, Wu J, Ju L, Zhang Z G, Xu L W, Yao B Q, Wang Y Z 2016 Infrared Phys. Technol. 77 149Google Scholar

    [18]

    Qian L M, Ren D M, Zhao W J, Liu Y Y, Qu Y C, Bai Y, Chen Z L 2012 Laser Phys. 22 708Google Scholar

    [19]

    Shie N C, Hsieh W F, Shy J T 2011 Opt. Express 19 21109Google Scholar

    [20]

    白扬博, 向望华, 祖鹏, 张贵忠 2012 物理学报 61 214208Google Scholar

    Bai Y B, Xiang W H, Zu P, Zhang G Z 2012 Acta Phys. Sin. 61 214208Google Scholar

    [21]

    Qu B, Xu B, Luo S, Cheng Y, Xu H, Cai Z, Camy P, Doualan J, Moncorgé R 2015 IEEE Photon. Technol. Lett. 27 333Google Scholar

    [22]

    Xu B, Liu Z, Xu H, Cai Z, Zeng C, Huang S, Yan Y, Wang F, Camy P, Doualan J L, Braud A, Moncorgé R 2013 Opt. Commun. 305 96Google Scholar

    [23]

    Luo S, Yan X, Cui Q, Xu B, Xu H, Cai Z 2016 Opt. Commun. 380 357Google Scholar

    [24]

    Fibrich M, Šulc J, Jelínková H 2016 Solid State Lasers XXV: Technology and Devices San Francisco, United States, February 15−18, 2016 p97261E-1

    [25]

    Fibrich M, Jelínková H, Šulc J, Nejezchleb K, Škoda V 2010 Solid State Lasers XIX: Technology and Devices San Francisco, United States, February 15−18, 2010 p757828-1

    [26]

    Gün T, Metz P, Huber G 2011 Appl. Phys. Lett. 99 92

    [27]

    Metz P W, Reichert F, Moglia F, Müller S, Marzahl D T, Kränkel C, Huber G 2014 Opt. Lett. 39 3193Google Scholar

    [28]

    Liu Z, Cai Z P, Huang S L, Zeng C H, Meng Z Y, Bu Y K, Luo Z Q, Xu B, Xu H Y, Ye C C, Stareki F, Camy P, Moncorgé R 2013 J. Opt. Soc. Am. B 30 302Google Scholar

  • [1] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [2] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [3] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [4] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [5] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [6] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [7] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [8] 廖宇, 简小华, 崔崤峣, 张麒. 一种基于双波长的光声测温技术. 物理学报, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [9] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [10] 李志成, 刘斌, 张荣, 张曌, 陶涛, 谢自力, 陈鹏, 江若琏, 郑有炓, 姬小利. 紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜的制备与研究. 物理学报, 2012, 61(8): 087802. doi: 10.7498/aps.61.087802
    [11] 翁永超, 况龙钰, 高南, 曹磊峰, 朱效立, 王晓华, 谢常青. 反射式单级衍射光栅. 物理学报, 2012, 61(15): 154203. doi: 10.7498/aps.61.154203
    [12] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [13] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [14] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [15] 任文华, 王燕花, 冯素春, 谭中伟, 刘 艳, 简水生. 对光纤布拉格光栅法布里-珀罗腔纵模间隔问题的研究. 物理学报, 2008, 57(12): 7758-7764. doi: 10.7498/aps.57.7758
    [16] 顾晓玲, 郭 霞, 梁 庭, 林巧明, 郭 晶, 吴 迪, 徐丽华, 沈光地. GaN基双波长发光二极管电致发光谱特性研究. 物理学报, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
    [17] 田剑锋, 吴正茂, 夏光琼. 啁啾的引入对线性负切趾型布拉格光栅双稳特性的影响. 物理学报, 2006, 55(12): 6419-6423. doi: 10.7498/aps.55.6419
    [18] 吕昌贵, 崔一平, 王著元, 恽斌峰. 光纤布拉格光栅法布里-珀罗腔纵模特性研究. 物理学报, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
    [19] 宋增福, 连绍仁, 桂尤喜, 姜洁, 华道宏, 王淑坤, 侯裕台. LiYF4:Nd3+的电子喇曼散射与双光子荧光. 物理学报, 1984, 33(7): 1017-1023. doi: 10.7498/aps.33.1017
    [20] 夏上达, 黄复华, 徐彭寿. LiYF4:Pr3+能级晶场分裂链的计算. 物理学报, 1984, 33(8): 1160-1166. doi: 10.7498/aps.33.1160
计量
  • 文章访问数:  9273
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2018-12-17
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回