搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性约束聚变装置中靶面光场特性的统计表征方法

杨钧兰 钟哲强 翁小凤 张彬

引用本文:
Citation:

惯性约束聚变装置中靶面光场特性的统计表征方法

杨钧兰, 钟哲强, 翁小凤, 张彬

Method of statistically characterizing target plane light field properties in inertial confinement fusion device

Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin
PDF
HTML
导出引用
  • 在激光驱动的惯性约束聚变装置中, 常采用多种束匀滑手段对焦斑的时空特性进行调控. 光传输链路中涉及的光学元件众多、传输变换复杂, 往往导致光传输模型复杂, 且在运用衍射光学方法分析焦斑形态和特征时面临大量的数据处理和计算, 致使出现计算量大、计算效率低等问题, 亟需寻求快速而简便的新方法来描述焦斑的统计特征. 本文利用光场特性的统计表征方法对靶面光场进行表征, 采用圆型复数高斯随机变量直接描述靶面光场的统计特征, 并基于典型焦斑评价参数对衍射光学方法和统计表征方法得到的远场焦斑进行了对比和分析. 结果表明, 采用衍射光学方法和统计表征方法获得的焦斑的瞬时特征基本一致, 其时间积分的远场焦斑有所不同, 但仍可进一步采用相关系数来表征其远场焦斑的时间变化特征.
    In the laser-driven inertial confinement fusion facilities, the irradiation uniformity of the laser beams on the target is a key factor affecting the effective compression of the target. At present, a variety of beam-smoothing techniques have been developed to control the spatiotemporal characteristics of the focal spots. However, many optical components involved in optical transmission links and complex transmission transformations often lead to complex optical transmission. Moreover, when using the diffraction optical method to analyze the shape and characteristics of the focal spots, a lot of data are needed to be processed and calculated, resulting in large calculation and low computational efficiency. It is urgent to find a new and fast method to describe the statistical properties of the focal spots. In addition, in the beam-smoothing technique, since the phase distribution of the continuous phase plate is obtained by multiple iterations of random numbers, although the details of focal spots obtained by different continuous phase plates are not the same, they all have similar statistical properties. Therefore, the modulation of the laser beam by the continuous phase plate can be regarded as the transmission process of the laser beam through a random surface. Although the intensities of the speckle within the focal spot at different locations have the strong randomness, and the random distributions of the target speckles obtained by different beam-smoothing methods are different, the overall distribution satisfies a certain statistical law. In this paper, the light-field properties of the focal spot are described by the statistical characterization method. The circular complex Gaussian random variables are used to directly describe the statistical properties of the target surface light field, and the far-field focal spots obtained by the diffractive optical method and those by the statistical characterization method are compared with each other and analyzed based on the typical focal spot evaluation parameters. The results show that the instantaneous properties of the focal spots obtained by the diffractive optical method and those obtained by the statistical characterization method are basically identical, but their time-integrated far-field focal spots are different. The correlation coefficient can be further used to describe the time-varying properties of the far-field focal spots. Compared with the diffractive optical method, in the numerical calculation process, the statistical characterization method of light field properties can directly obtain the analytical expression of the statistical distribution of the light field according to the statistical properties of the continuous phase plate surface shape. Secondly, this method can avoid the numerical calculation process from near field to far field. Last but not least, there is no need to perform data processing on each point of the light field, which makes things simple and effective and does not require large-scale data storage and processing.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 国家重大专项应用基础项目(批准号: G2017149, JG2017029, JG2018115)和科技部创新人才推进计划重点领域创新团队项目(批准号: 2014RA4051)资助的课题.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Basic Research Program of the National Major Project of China (Grant Nos. G2017149, JG2017029, JG2018115) and the China Innovative Talent Promotion Plans for Innovation Team in Priority Fields (Grant No. 2014RA4051).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S C, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

    [3]

    Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171Google Scholar

    [4]

    Lin Y, Kessler T J, Lawrence G N 1996 Opt. Lett. 21 1703Google Scholar

    [5]

    李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202Google Scholar

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202Google Scholar

    [6]

    Garnier J, Videau L, Gouedard C, Migus A 1997 J. Opt. Soc. Am. A 14 1928Google Scholar

    [7]

    Garnier J, Videau L 2001 Phys. Plasmas 8 4914Google Scholar

    [8]

    Le Cain A, Riazuelo G, Sajer J M 2011 Phys. Plasmas 18 082711Google Scholar

    [9]

    Le Cain A, Riazuelo G, Sajer J M 2012 Phys. Plasmas 19 102704Google Scholar

    [10]

    林中校, 张蓉竹, 杨春林, 许乔 2010 强激光与粒子束 22 2634

    Lin Z X, Zhang R Z, Yang C L, Xu Q 2010 High Power Laser and Partical Beams 22 2634

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74Google Scholar

    [12]

    Kline J L, Glenzer S H, Olson R E, Suter L J, Widmann K, Callahan D A, Dixit S N, Thomas C A, Hinkel D E, Williams E A, Moore A S, Celeste J, Dewald, E, Hsing W W, Warrick A, Atherton J, Azevedo S, Beeler R, Berger R, Conder A, Divol L, Haynam C A, Kalantar D H, Kauffman R, Kyrala G A, Kilkenny J, Liebman J, Le Pape S, Larson D, Meezan N B, Michel P, Moody J, Rosen M D, Schneider M B, Van Wonterghem B, Wallace R J, Young B K, Landen O L, MacGowan B J 2011 Phys. Rev. Lett. 106 085003Google Scholar

    [13]

    张锐 2013 博士学位论文(合肥: 中国科学技术大学)

    Zhang R 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [14]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [15]

    钟哲强, 侯鹏程, 张彬 2016 物理学报 65 094207Google Scholar

    Zhong Z Q, Hou P C, Zhang B 2016 Acta Phys. Sin. 65 094207Google Scholar

    [16]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [17]

    Haynam C A, Wegner P J, Auerbach J M, et al. 2007 Appl. Opt. 46 3276Google Scholar

    [18]

    Rothenberg J E 1997 J. Opt. Soc. Am. B: Opt. Phys. 14 1664Google Scholar

    [19]

    李俊昌 2008 计算物理 25 330Google Scholar

    Li J C 2008 Chinese Journal of Computational Physics 25 330Google Scholar

    [20]

    吕晨, 张蓉竹 2014 物理学报 63 164203Google Scholar

    Lü C, Zhang R Z 2014 Acta Phys. Sin. 63 164203Google Scholar

    [21]

    温圣林, 唐才学, 张远航, 颜浩, 侯晶, 罗子健 2015 中国激光 42 0908001

    Wen S L, Tang C X, Zhang Y H, Yan H, Hou J, Luo Z J 2015 Chinese Journal of Lasers 42 0908001

    [22]

    冯友君, 林中校, 张蓉竹 2011 物理学报 60 104202Google Scholar

    Feng Y J, Lin Z X, Zhang R Z 2011 Acta Phys. Sin. 60 104202Google Scholar

    [23]

    杨春林 2018 物理学报 67 085201

    Yang C L 2018 Acta Phys. Sin. 67 085201

    [24]

    Joseph W G 2009 Speckle Phenomena in Optics (Beijing: Science Press) pp62−71

    [25]

    李腾飞, 侯鹏程, 张彬 2016 光学学报 36 1114002

    Li T F, Hou P C, Zhang B 2016 Acta Opt. Sin. 36 1114002

  • 图 1  激光束传输和聚焦光路 (a) SSD+CPP; (b) RS+CPP

    Fig. 1.  Transmission and focusing light path of laser beam: (a) SSD+CPP; (b) RS+CPP.

    图 2  不同随机数种子得到的CPP的位相统计分布

    Fig. 2.  Statistical distribution of the phase of CPP obtained from different random number seeds.

    图 3  经CPP调制后激光束汇聚至靶面的过程

    Fig. 3.  The process of the laser beam converged to the target plane after the modulation of CPP.

    图 4  激光束经过CPP整形后靶面光强和位相统计特征 (a) CPP整形后的靶面光强分布; (b) CPP整形后的靶面振幅分布; (c) CPP位相与远场位相统计分布

    Fig. 4.  The statistical characteristics of the laser beam's intensity and phase of the target plane after CPP's shaping: (a) Intensity distribution of the target plane after CPP's reshaping; (b) amplitude distribution of the target plane after CPP's shaping; (c) statistical distribution of CPP's phase and far field phase.

    图 5  数值求解与的瞬时远场光强特性比较 (a)瞬时焦斑光强FOPAI对比; (b)数值求解远场位相与解析求解远场位相统计特性

    Fig. 5.  Comparison of characteristics of instantaneous far-field intensity solved by numerical analysis and that Solved by analytical solution: (a) FOPAI's comparison instantaneous focal spot intensity; (b) statistical characteristics of numerical solution far-field phase and analytical solution far-field phase.

    图 6  不同束匀滑方案下瞬时与积分焦斑的统计特性 (a) 1D-SSD+CPP瞬时、积分焦斑及其PSD; (b) RS+CPP瞬时、积分焦斑及其PSD

    Fig. 6.  Statistical characteristics of instantaneous and integral focal spots obtained by different beam smoothing schemes: (a) Instantaneous, integral focal spots and their PSD of 1D-SSD+CPP; (b) instantaneous, integral focal spots and their PSD of RS+CPP.

    图 7  不同束匀滑方案的近场、远场的时间相关特性 (a) 1D-SSD+CPP时间相关特性; (b) RS+CPP时间相关特性

    Fig. 7.  The near-field, far-field temporal and spatial correlation characteristics of different beam smoothing schemes: (a) Temporal correlation of 1D-SSD+CPP; (b) temporal correlation of RS+CPP.

    表 1  瞬时与积分焦斑的PSD积分与光通量对比度的统计关系

    Table 1.  Statistical relationship between PSD integral and luminous flux contrast of instantaneous and integral focal spots.

    StatisticsPSD integral square value
    of instantaneous
    Instantaneous luminous
    flux contrast
    PSD integral square value
    of time integral
    Integrated luminous
    flux contrast
    CPP1.0691.094
    Statistical optical0.9790.987
    SSD+CPP1.0791.0931.0670.514
    RS+CPP1.0771.0901.0560.478
    下载: 导出CSV
  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S C, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

    [3]

    Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171Google Scholar

    [4]

    Lin Y, Kessler T J, Lawrence G N 1996 Opt. Lett. 21 1703Google Scholar

    [5]

    李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202Google Scholar

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202Google Scholar

    [6]

    Garnier J, Videau L, Gouedard C, Migus A 1997 J. Opt. Soc. Am. A 14 1928Google Scholar

    [7]

    Garnier J, Videau L 2001 Phys. Plasmas 8 4914Google Scholar

    [8]

    Le Cain A, Riazuelo G, Sajer J M 2011 Phys. Plasmas 18 082711Google Scholar

    [9]

    Le Cain A, Riazuelo G, Sajer J M 2012 Phys. Plasmas 19 102704Google Scholar

    [10]

    林中校, 张蓉竹, 杨春林, 许乔 2010 强激光与粒子束 22 2634

    Lin Z X, Zhang R Z, Yang C L, Xu Q 2010 High Power Laser and Partical Beams 22 2634

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74Google Scholar

    [12]

    Kline J L, Glenzer S H, Olson R E, Suter L J, Widmann K, Callahan D A, Dixit S N, Thomas C A, Hinkel D E, Williams E A, Moore A S, Celeste J, Dewald, E, Hsing W W, Warrick A, Atherton J, Azevedo S, Beeler R, Berger R, Conder A, Divol L, Haynam C A, Kalantar D H, Kauffman R, Kyrala G A, Kilkenny J, Liebman J, Le Pape S, Larson D, Meezan N B, Michel P, Moody J, Rosen M D, Schneider M B, Van Wonterghem B, Wallace R J, Young B K, Landen O L, MacGowan B J 2011 Phys. Rev. Lett. 106 085003Google Scholar

    [13]

    张锐 2013 博士学位论文(合肥: 中国科学技术大学)

    Zhang R 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [14]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [15]

    钟哲强, 侯鹏程, 张彬 2016 物理学报 65 094207Google Scholar

    Zhong Z Q, Hou P C, Zhang B 2016 Acta Phys. Sin. 65 094207Google Scholar

    [16]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [17]

    Haynam C A, Wegner P J, Auerbach J M, et al. 2007 Appl. Opt. 46 3276Google Scholar

    [18]

    Rothenberg J E 1997 J. Opt. Soc. Am. B: Opt. Phys. 14 1664Google Scholar

    [19]

    李俊昌 2008 计算物理 25 330Google Scholar

    Li J C 2008 Chinese Journal of Computational Physics 25 330Google Scholar

    [20]

    吕晨, 张蓉竹 2014 物理学报 63 164203Google Scholar

    Lü C, Zhang R Z 2014 Acta Phys. Sin. 63 164203Google Scholar

    [21]

    温圣林, 唐才学, 张远航, 颜浩, 侯晶, 罗子健 2015 中国激光 42 0908001

    Wen S L, Tang C X, Zhang Y H, Yan H, Hou J, Luo Z J 2015 Chinese Journal of Lasers 42 0908001

    [22]

    冯友君, 林中校, 张蓉竹 2011 物理学报 60 104202Google Scholar

    Feng Y J, Lin Z X, Zhang R Z 2011 Acta Phys. Sin. 60 104202Google Scholar

    [23]

    杨春林 2018 物理学报 67 085201

    Yang C L 2018 Acta Phys. Sin. 67 085201

    [24]

    Joseph W G 2009 Speckle Phenomena in Optics (Beijing: Science Press) pp62−71

    [25]

    李腾飞, 侯鹏程, 张彬 2016 光学学报 36 1114002

    Li T F, Hou P C, Zhang B 2016 Acta Opt. Sin. 36 1114002

  • [1] 熊皓, 钟哲强, 张彬, 隋展, 张小民. 基于束间动态干涉的快速匀滑新方法. 物理学报, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [2] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案. 物理学报, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [3] 高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展. 基于低相干光的阵列透镜束匀滑技术研究. 物理学报, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [4] 李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案. 物理学报, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [5] 江秀娟, 唐一凡, 王利, 李菁辉, 王博, 项颖. 考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究. 物理学报, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [6] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案. 物理学报, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [7] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案. 物理学报, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [8] 钟哲强, 胡小川, 李泽龙, 叶荣, 张彬. 用于直接驱动的快速变焦新方案. 物理学报, 2015, 64(5): 054209. doi: 10.7498/aps.64.054209
    [9] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [10] 姚银萍, 万仁刚, 薛玉郎, 张世伟, 张同意. 基于统计光学的正负热光非定域成像. 物理学报, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [11] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [12] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [13] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [14] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [15] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦. 物理学报, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] 李平, 粟敬钦, 马驰, 张锐, 景峰. 光谱色散匀滑对焦斑光强频谱的影响. 物理学报, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [18] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究. 物理学报, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [20] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
计量
  • 文章访问数:  7288
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2019-01-16
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回