搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非局域颗粒复合介质的相干完美吸收效应

陈志鹏 於文静 高雷

引用本文:
Citation:

非局域颗粒复合介质的相干完美吸收效应

陈志鹏, 於文静, 高雷

Coherent perfect absorption in nonlocal particle composite medium

Chen Zhi-Peng, Yu Wen-Jing, Gao Lei
PDF
HTML
导出引用
  • 研究了两束相干光以相同的入射角从左、右两侧分别入射到Au-SiO2复合介质板时, 在不同的体系参数下该复合材料体系发生相干完美吸收的情形. 运用有效媒质理论推导出了复合介质的有效介电常数以及有效磁导率; 在得到有效电磁参数的基础上进一步推导得到平面波入射复合介质板时的反/透射系数. 通过比较分析非局域和局域情况下颗粒复合介质的相干完美吸收现象, 发现当颗粒尺寸很小时非局域效应的影响会导致复合介质产生相干完美吸收的入射光的频率范围显著变宽. 在进一步的解析计算中, 通过调节复合介质板的厚度、入射光波长、金属颗粒体积分数等参数得到了不同情况下产生的相干完美吸收现象, 并由此分析非局域情形下对于相干完美吸收现象的调控.
    We explore the coherent perfect absorption of light in a nonlocal metal-dielectric composite film in which metallic nanoparticles (gold) are randomly embedded in the dielectric host medium (silica). The two coherent light beams illuminate the gold-silica composite slab respectively from the left and right sides at the same angle of incidence and the conditions required for coherent perfect absorption are investigated each as a function of different system parameters. Under different system parameters, we study the coherent perfect absorption of a nonlocal particle composite medium. A nonlocal effective medium theory is proposed to approximately describe the metal-dielectric composite film. The effective permittivity and effective permeability of the composite medium are approximated by using the effective medium theory under the model of coated sphere with core and shell. According to the effective dielectric parameters of the composite medium, we can obtain the transmission coefficient and reflection coefficient of the plane wave incident on the slab. By comparing and analyzing the coherent perfect absorptions of the composite medium under nonlocal and local conditions, we find that under the influence of nonlocal effect when the size of particle is very small, the frequency range of incident light that produces the coherent perfect absorption of the composite medium increases and the small size can also cause the coherent perfect absorption to occur in wider frequency range. Especially, we pay attention to the choosing of physical parameters in the design of coherent perfect absorption with macroscopic composite slab when we take the nonlocal effect (or spatial dispersion) into account. In the further calculation, the coherent perfect absorption of the composite medium can be realized by changing the system parameters such as the thickness of composite slab, the wavelength of incident light, the volume fraction of metal particles, etc. We also bring about the coherent perfect absorption at a small volume fraction which satisfies all the conditions. Finally, according to these results, we can realize the control of the coherent perfect absorption with nonlocal effect. Our study may be helpful in designing the optical nanoabsorbers.
      通信作者: 高雷, leigao@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774252)、江苏省自然科学基金(批准号: BK20161210)、江苏省青蓝工程、“333”工程(批准号: BRA2015353)和江苏省高校优势学科建设工程资助的课题.
      Corresponding author: Gao Lei, leigao@suda.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11774252), the National Science of Jiangsu Province, China (Grant No. BK20161210), the Qing Lan Project of Jiangsu Province, the “333” Project (Grant No. BRA2015353), and the PAPD of Jiangsu Higher Education Institutions, China.
    [1]

    Dutta-Gupta S, Martin O J F, Gupta S D, Agarwal G S 2012 Opt. Express 20 001330Google Scholar

    [2]

    Sanjeeb D 2015 Opt. Commun. 356 515Google Scholar

    [3]

    Fu Y Y, Xu Y D, Chen H Y, Cummer S 2017 New J. Phys. 20 013015Google Scholar

    [4]

    Huang S, Xie Z W, Chen W D, Lei J Q, Wang F L, Liu K, Li L 2018 Opt. Express 26 7066Google Scholar

    [5]

    Müllers A, Santra B, Baals C, Jiang J, Benary J, Labouvie R, Zezyulin D A, Konotop V V, Ott H 2018 Sci. Adv. 4 eaat6539Google Scholar

    [6]

    Ruppin R 1973 Phys. Rev. Lett. 31 1434Google Scholar

    [7]

    Fuchs R, Claro F 1987 Phys. Rev. B 35 3722Google Scholar

    [8]

    Rojas R, Claro F, Fuchs R 1988 Phys. Rev. B 37 6799Google Scholar

    [9]

    Chang R, Leung P T 2006 Phys. Rev. B 73 125438Google Scholar

    [10]

    Xie H Y, Chung H Y, Leung P T, Tsai D P 2009 Phys. Rev. B 80 155448Google Scholar

    [11]

    Huang Y, Gao L 2013 Prog. Electromagn. Res. 133 591Google Scholar

    [12]

    Huang Y, Bian X, Ni Y X, Miroshnichenko A E, Gao L 2014 Phys. Rev. A 89 053824Google Scholar

    [13]

    McMahon J M, Gray S K, Schatz G C 2010 Nano Lett. 10 3473Google Scholar

    [14]

    Toscano G, Raza S, Jauho A P, Mortensen N A, Wubs M 2012 Opt. Express 20 4176Google Scholar

    [15]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887Google Scholar

    [16]

    Esteban R, Borisov A G, Nordlander P, Aizpurua J 2012 Nat. Commun. 3 825Google Scholar

    [17]

    Dong T Y, Ma X K, Mittra R 2012 Appl. Phys. Lett. 101 233111Google Scholar

    [18]

    Stell L, Zhang P, García-Vidal F J, Rubio A, García-González P 2013 J. Phys. Chem. C 117 8941Google Scholar

    [19]

    Maxwell G J C 1906 Philos. Trans. Roy. Soc. London 205 237Google Scholar

    [20]

    Bruggeman D A G 1935 Ann. Phys. (Leipzig) 24 636Google Scholar

    [21]

    Huang Y, Gao L 2013 J. Phys. Chem. C 117 19203Google Scholar

    [22]

    Dias E J C, Iranzo D A, Gonçalves P A D, Hajati Y, Bludov Y V, Jauho A P, Mortensen N A, Koppens F H L, Peres N M R 2018 Phys. Rev. B 97 245405Google Scholar

    [23]

    Agarwal G S, O'Neil S V 1983 Phys. Rev. B 28 487Google Scholar

    [24]

    Mcmahon J, Gray S, Schatz G 2009 Phys. Rev. Lett. 103 097403Google Scholar

    [25]

    Dasgupta B B, Fuchs R 1981 Phys. Rev. B 24 554Google Scholar

  • 图 1  相干完美吸收的示意图

    Fig. 1.  Schematic diagram of coherent perfect absorption.

    图 2  有效媒质理论模型, 红色为金属颗粒, 蓝色为基底介质, 灰色为有效介质

    Fig. 2.  The model of effective medium. The red part is metal particles, the blue part is base medium, and the grey part is effective medium.

    图 3  (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012时有效介电常数的实部; (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012时有效介电常数的虚部随$\lambda $的变化; 此时d为5 ${\text{μ}}{\rm m}$, a为2 nm

    Fig. 3.  (a1), (b1) and (c1) are the real parts of effective permittivity as function of $\lambda $, for (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012; (a2), (b2), (c2) are the imaginary parts of effective permittivity as function of $\lambda $, for (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012. d = 5 ${\text{μ}}{\rm m}$, a = 2 nm.

    图 4  (a1), (b1), (c1) a = 2, 5, 10 nm时, 局域效应下$\lg|r_1+t_2|^2$$\lambda $f的函数关系; (a2), (b2), (c2)对应情况下考虑非局域效应时的结果; 入射角$\theta$ = 45°

    Fig. 4.  $\lg |r_1 \!+\! t_2|^2$ as functions of $\lambda $ and f with different metallic nanoparticle radius (a) a = 2 nm, (b) a = 5 nm, (c)a = 10 nm: (a1), (b1) and (c1) are within the local description and (a2), (b2) and (c2) are within the nonlocal description. The incident angle is $\theta$=45°.

    图 5  (a) d = 2 ${\text{μ}}{\rm m}$, (b) d = 5 ${\text{μ}}{\rm m}$, (c)、d = 10 ${\text{μ}}{\rm m}$时散射光强对数${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$$\lambda $f的函数关系图, 此时入射角$\theta $为45°

    Fig. 5.  ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as functions of $\lambda $ and f with thickness of medium plate (a) d = 2 ${\text{μ}}{\rm m}$, (b) d = 5 ${\text{μ}}{\rm m}$, (c) d = 10 ${\text{μ}}{\rm m}$. The incident angle is $\theta $ = 45°.

    图 6  a = 2 nm, d = 5 ${\text{μm}}$, ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$$\lambda $f的函数关系

    Fig. 6.  Color map of ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as functions of $\lambda $ and f for a = 2 nm, d = 5 ${\text{μm}}$.

    图 7  f = 0.0012, $\theta $ = 45°时, (a) $\left| {r_1 } \right|$(蓝色)、$\left| {t_2 } \right|$(红色)与$\lambda $的函数关系, (b) $\left| {\Delta \phi } \right|/{\text{π}}$$\lambda $的函数关系, (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$$\lambda $的函数关系

    Fig. 7.  For f = 0.0012, $\theta $ = 45°, (a) $\left| {r_1 } \right|$ (blue), $\left| {t_2 } \right|$ (red) as function of $\lambda $, (b) $\left| {\Delta \phi } \right|/{\text{π}}$ as function of $\lambda $, (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$as function of $\lambda $.

    图 8  $\lambda $ = 310 nm, $\theta = 45^\circ $时, (a) $\left| {r_1 } \right|$ (蓝色), $\left| {t_2 } \right|$(红色)与f的函数关系; (b) $\left| {\Delta \phi } \right|/{\text{π}}$f的函数关系; (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$f的函数关系

    Fig. 8.  For $\lambda $ = 310 nm, $\theta = 45^\circ $, (a) $\left| {r_1 } \right|$ (blue), $\left| {t_2 } \right|$ (red) as function of f, (b) $\left| {\Delta \phi } \right|/{\text{π}}$ as function of f, (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as function of f.

  • [1]

    Dutta-Gupta S, Martin O J F, Gupta S D, Agarwal G S 2012 Opt. Express 20 001330Google Scholar

    [2]

    Sanjeeb D 2015 Opt. Commun. 356 515Google Scholar

    [3]

    Fu Y Y, Xu Y D, Chen H Y, Cummer S 2017 New J. Phys. 20 013015Google Scholar

    [4]

    Huang S, Xie Z W, Chen W D, Lei J Q, Wang F L, Liu K, Li L 2018 Opt. Express 26 7066Google Scholar

    [5]

    Müllers A, Santra B, Baals C, Jiang J, Benary J, Labouvie R, Zezyulin D A, Konotop V V, Ott H 2018 Sci. Adv. 4 eaat6539Google Scholar

    [6]

    Ruppin R 1973 Phys. Rev. Lett. 31 1434Google Scholar

    [7]

    Fuchs R, Claro F 1987 Phys. Rev. B 35 3722Google Scholar

    [8]

    Rojas R, Claro F, Fuchs R 1988 Phys. Rev. B 37 6799Google Scholar

    [9]

    Chang R, Leung P T 2006 Phys. Rev. B 73 125438Google Scholar

    [10]

    Xie H Y, Chung H Y, Leung P T, Tsai D P 2009 Phys. Rev. B 80 155448Google Scholar

    [11]

    Huang Y, Gao L 2013 Prog. Electromagn. Res. 133 591Google Scholar

    [12]

    Huang Y, Bian X, Ni Y X, Miroshnichenko A E, Gao L 2014 Phys. Rev. A 89 053824Google Scholar

    [13]

    McMahon J M, Gray S K, Schatz G C 2010 Nano Lett. 10 3473Google Scholar

    [14]

    Toscano G, Raza S, Jauho A P, Mortensen N A, Wubs M 2012 Opt. Express 20 4176Google Scholar

    [15]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887Google Scholar

    [16]

    Esteban R, Borisov A G, Nordlander P, Aizpurua J 2012 Nat. Commun. 3 825Google Scholar

    [17]

    Dong T Y, Ma X K, Mittra R 2012 Appl. Phys. Lett. 101 233111Google Scholar

    [18]

    Stell L, Zhang P, García-Vidal F J, Rubio A, García-González P 2013 J. Phys. Chem. C 117 8941Google Scholar

    [19]

    Maxwell G J C 1906 Philos. Trans. Roy. Soc. London 205 237Google Scholar

    [20]

    Bruggeman D A G 1935 Ann. Phys. (Leipzig) 24 636Google Scholar

    [21]

    Huang Y, Gao L 2013 J. Phys. Chem. C 117 19203Google Scholar

    [22]

    Dias E J C, Iranzo D A, Gonçalves P A D, Hajati Y, Bludov Y V, Jauho A P, Mortensen N A, Koppens F H L, Peres N M R 2018 Phys. Rev. B 97 245405Google Scholar

    [23]

    Agarwal G S, O'Neil S V 1983 Phys. Rev. B 28 487Google Scholar

    [24]

    Mcmahon J, Gray S, Schatz G 2009 Phys. Rev. Lett. 103 097403Google Scholar

    [25]

    Dasgupta B B, Fuchs R 1981 Phys. Rev. B 24 554Google Scholar

  • [1] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [2] 孙楠楠, 施展, 丁琪, 许伟伟, 沈洋, 南策文. 基于有效介质理论的物理性能计算模型的软件实现. 物理学报, 2019, 68(15): 157701. doi: 10.7498/aps.68.20182273
    [3] 张永棠. 一种广义三模腔光机械系统的相干完美吸收与透射. 物理学报, 2017, 66(10): 107101. doi: 10.7498/aps.66.107101
    [4] 吴丹丹, 佘卫龙. 线性吸收介质非局域线性电光效应的耦合波理论. 物理学报, 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [5] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [6] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [7] 康艳霜, 孙宗利. 荷电流体中静电关联效应的有效势模型. 物理学报, 2014, 63(13): 136101. doi: 10.7498/aps.63.136101
    [8] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理. 物理学报, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [9] 李倩倩, 陈小刚, 包曙红, 郭军明, 翟丽丽. 非线性柱形涂层复合介质有效的直流-交流电响应. 物理学报, 2013, 62(5): 057201. doi: 10.7498/aps.62.057201
    [10] 沈云, 于国萍, 傅继武. 一维反激光器完美相干吸收理论分析. 物理学报, 2012, 61(16): 164204. doi: 10.7498/aps.61.164204
    [11] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [12] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应. 物理学报, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [13] 宋亚舞, 孙 华. 非磁性半导体异常磁电阻效应的有效介质理论. 物理学报, 2008, 57(11): 7178-7184. doi: 10.7498/aps.57.7178
    [14] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [15] 赵天恩, 伍瑞新, 杨 帆, 陈 平. 周期性层状铁氧体-电介质复合材料中导模模式的有效负折射率. 物理学报, 2006, 55(1): 179-183. doi: 10.7498/aps.55.179
    [16] 张 芸, 张波萍, 焦力实, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究. 物理学报, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [17] 陆兴中, 高 雷. 颗粒复合介质在高温下的光学双稳特性. 物理学报, 2004, 53(12): 4373-4377. doi: 10.7498/aps.53.4373
    [18] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力. 物理学报, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [19] 包科达. 含椭球包体多相复合介质电导率的有效介质理论. 物理学报, 1992, 41(5): 833-840. doi: 10.7498/aps.41.833
    [20] 马余强, 李振亚. 二元无规混合系统的有效介质理论. 物理学报, 1990, 39(3): 457-463. doi: 10.7498/aps.39.457
计量
  • 文章访问数:  7299
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2018-12-30
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回