搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锶原子光晶格钟黑体辐射频移评估

李婷 卢晓同 张强 孔德欢 王叶兵 常宏

引用本文:
Citation:

锶原子光晶格钟黑体辐射频移评估

李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏

Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock

Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong
PDF
HTML
导出引用
  • 在中性原子光晶格钟的系统不确定度评估中, 通常黑体辐射引起的频移是最大的一项. 黑体辐射频移主要受周围环境温度的影响. 针对国家授时中心的锶原子光晶格钟实验系统, 通过理论分析、腔体表面温度的测量和软件模拟相结合的方法, 评估了锶原子光晶格钟黑体辐射频移的修正量和不确定度. 其中主要分析了锶原子炉、蓝宝石加热窗口、透过窗口片进入到真空腔体内的室温以及Zeeman减速装置对原子团处的热辐射引起的黑体辐射频移. 在真空腔体外表面设置了5个测温点, 利用校准过的铂电阻温度传感器监测真空腔体外表面的温度变化, 用SolidWorks绘图软件建立腔体模型, 通过有限元分析软件模拟出在真空腔体温度变化0.72 K时, 原子团所处位置温度的波动为0.34 K. 最终得到黑体辐射频移总的修正量为–2.13(1) Hz, 不确定度为2.4 × 10–17.
    The frequency shift caused by blackbody radiation is one of the dominant corrections to the evaluation of the optical lattice clock. The frequency shift of blackbody radiation is closely related to the dynamic and static correction factor, ambient temperature and atomic polarizability. The blackbody radiation shift is mainly affected by ambient temperature. During the normal operation of the strontium atom optical lattice clock, the experimental environment and other heat sources around the vacuum cavity have complicated the environment around the vacuum cavity, resulting in the fact that the external surface temperature of the vacuum cavity does not truly reflect the temperature change of the vacuum cavity. For the strontium atomic optical clock experimental apparatus of the National Time Service Center, the uncertainty and correctionof the blackbody radiation frequency shift are evaluated by the theoretical analysis, measurement of the temperature of the vacuum cavity outer surface, and software simulation. Among them, the frequency shift of black body radiation caused by strontium atom furnace, sapphire heating window, room temperature radiation entering into the vacuum cavity through the window plate, and the thermal radiation at the atomic group caused by Zeeman reducer are analyzed. Five temperature measuring points are set on the external surface of the vacuum chamber, and the temperature changes on the external surface of the vacuum chamber are monitored in real time by using the calibrated platinum resistance temperature sensor while the system is running normally. We obtain the average temperature of the five temperature measuring points. The model of vacuum cavity is established by using the SolidWorks. The method of finite element analysis is used to simulate the variation of the temperature around atom samples. We also obtain the temperature distribution around the atomic groups in the vacuum cavity. The result shows that the temperature around atoms varies with the temperature of the vacuum cavity. When the temperature of the ambient temperature changes 0.72 K, the fluctuation of the temperature around the atoms is 0.34 K. Finally, the total correction of blackbody radiation of the system is evaluated to be –2.13(1) Hz, and the correction uncertainty is about 2.4 × 10–17.
      通信作者: 王叶兵, wangyebing@ntsc.ac.cn ; 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11803042, 11474282, 61775220)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SSW-JSC004)和中国科学院国家授时中心青年创新人才项目资助的课题.
      Corresponding author: Wang Ye-Bing, wangyebing@ntsc.ac.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11803042, 11474282, 61775220), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Project of Youth Innovation Talents of NTSC.
    [1]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [2]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [3]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [4]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [5]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar

    [6]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar

    [7]

    McGrew W F, Zhang X, Fasano1 R J, Schäffer S A , Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [8]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [9]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [10]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Baillard X, Fouché M, Le Targat R, Brusch A, Lemonde P, Takamoto M, Hong F L, Katori H, Flambaum V V 2008 Phys. Rev. Lett. 100 140801Google Scholar

    [11]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [12]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [13]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [14]

    Yudin V I, Taichenachev A V, Okhapkin M V, Bagayev S N, Tamm C, Peik E, Huntemann N, Mehlstäubler T E, Riehle F 2011 Phys. Rev. Lett. 107 030801Google Scholar

    [15]

    Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, FeldmanA, Hanssen L M, Oates C W, Ludlow A D 2014 Phys. Rev. Lett. 113 260801Google Scholar

    [16]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [17]

    Wang Y B, Lu X T, Lu B Q, Kong D H, Chang H 2018 Appl. Sci. 8 2194Google Scholar

    [18]

    Itano W M, Lewis L L, Wineland D J 1982 Phys. Rev. A 25 1233Google Scholar

    [19]

    Hollberg L, Hall J L 1984 Phys. Rev. Lett. 53 230Google Scholar

    [20]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [21]

    Safronova M S, Porsev S G, Safronova U I, Kozlov M G, Clark C W 2013 Phys. Rev. A 87 012509Google Scholar

    [22]

    Middelmann T, Lisdat C, Falke S, Winfred J S R V, Riehle F, Sterr U 2011 IEEE Trans. Instrum. Meas. 60 2550Google Scholar

    [23]

    Middelmann T, Falke S, Lisdat C, Sterr U 2012 Phys. Rev. Lett. 109 263004Google Scholar

    [24]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023Google Scholar

  • 图 1  实验装置

    Fig. 1.  Experimental apparatus.

    图 2  一维光晶格

    Fig. 2.  Image of the one-dimensional optical lattice.

    图 3  87Sr原子钟跃迁谱线

    Fig. 3.  Spectra of the 87Sr clock transition.

    图 4  吸收系数对频移的影响

    Fig. 4.  Effect of the absorption coefficient on frequency shift.

    图 5  测温点的分布

    Fig. 5.  Distribution of the temperature points.

    图 6  测温点的温度波动

    Fig. 6.  Temperature fluctuations at the temperature points.

    图 7  网格划分结果

    Fig. 7.  Result of meshing.

    图 8  真空腔体内部温度分布

    Fig. 8.  Distribution of the internal temperature of the vacuum chamber.

    表 1  不同热源对应的频移修正量

    Table 1.  Frequency shift correction for different heat sources.

    热源频移修正量
    室温–0.0172(2) Hz
    原子炉–0.0031(4) Hz
    蓝宝石加热窗口–0.0013(1) Hz
    Zeeman减速窗口–0.00027(4) Hz
    下载: 导出CSV
  • [1]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [2]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [3]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [4]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [5]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar

    [6]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar

    [7]

    McGrew W F, Zhang X, Fasano1 R J, Schäffer S A , Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [8]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [9]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [10]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Baillard X, Fouché M, Le Targat R, Brusch A, Lemonde P, Takamoto M, Hong F L, Katori H, Flambaum V V 2008 Phys. Rev. Lett. 100 140801Google Scholar

    [11]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [12]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [13]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [14]

    Yudin V I, Taichenachev A V, Okhapkin M V, Bagayev S N, Tamm C, Peik E, Huntemann N, Mehlstäubler T E, Riehle F 2011 Phys. Rev. Lett. 107 030801Google Scholar

    [15]

    Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, FeldmanA, Hanssen L M, Oates C W, Ludlow A D 2014 Phys. Rev. Lett. 113 260801Google Scholar

    [16]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [17]

    Wang Y B, Lu X T, Lu B Q, Kong D H, Chang H 2018 Appl. Sci. 8 2194Google Scholar

    [18]

    Itano W M, Lewis L L, Wineland D J 1982 Phys. Rev. A 25 1233Google Scholar

    [19]

    Hollberg L, Hall J L 1984 Phys. Rev. Lett. 53 230Google Scholar

    [20]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [21]

    Safronova M S, Porsev S G, Safronova U I, Kozlov M G, Clark C W 2013 Phys. Rev. A 87 012509Google Scholar

    [22]

    Middelmann T, Lisdat C, Falke S, Winfred J S R V, Riehle F, Sterr U 2011 IEEE Trans. Instrum. Meas. 60 2550Google Scholar

    [23]

    Middelmann T, Falke S, Lisdat C, Sterr U 2012 Phys. Rev. Lett. 109 263004Google Scholar

    [24]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023Google Scholar

  • [1] 丛源涛, 王秋良, 程军胜, 熊玲, 孙建. 一种轴径双向分离式电磁线圈驱动装置的结构响应特性. 物理学报, 2024, 73(13): 130201. doi: 10.7498/aps.73.20240239
    [2] 熊家骋, 黄哲群, 张恒, 王启祥, 崔可航. 热光伏器件中的光谱调控. 物理学报, 2024, 73(14): 144402. doi: 10.7498/aps.73.20240629
    [3] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, 2023, 72(14): 142801. doi: 10.7498/aps.72.20230559
    [5] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [6] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用. 物理学报, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [9] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测. 物理学报, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [10] 李树, 邓力, 田东风, 李刚. 基于能量密度分布的辐射源粒子空间抽样方法研究. 物理学报, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [11] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解. 物理学报, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [12] 赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓. 薄片激光器热效应及其对输出功率的影响. 物理学报, 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [13] 刘李辉, 邹宏新, 刘曲, 李玺. 199Hg+光频标的黑体辐射频移. 物理学报, 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [14] 钟广明, 杜晓晴, 唐杰灵, 董向坤, 雷小华, 陈伟民. 影响倒装焊LED芯片电流分布均匀性的因素分析. 物理学报, 2012, 61(12): 127803. doi: 10.7498/aps.61.127803
    [15] 孙健, 刘伟强. 内嵌定向高导热层疏导式结构热防护机理分析. 物理学报, 2012, 61(12): 124401. doi: 10.7498/aps.61.124401
    [16] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [17] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析. 物理学报, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [18] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [19] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [20] 史旺林, 刘兴业, 刘振兴. Vaidya-Bonner-de Sitter黑洞对狄拉克粒子的热辐射. 物理学报, 2004, 53(7): 2396-2400. doi: 10.7498/aps.53.2396
计量
  • 文章访问数:  9051
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-28
  • 修回日期:  2019-02-23
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回