搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子算法的量子态层析新方案

杨乐 李凯 戴宏毅 张明

引用本文:
Citation:

基于量子算法的量子态层析新方案

杨乐, 李凯, 戴宏毅, 张明

A novel scheme of quantum state tomography based on quantum algorithms

Yang Le, Li Kai, Dai Hong-Yi, Zhang Ming
PDF
HTML
导出引用
  • 在经典信息可有效制备为量子态和量子算法可物理实现的条件下, 深入研究了量子算法如何有效改善基于线性回归估计的量子态层析算法的时间复杂度问题. 在已有的量子算法基础上, 形成了量子态层析的新方案. 与现有的经典算法相比, 本文所提方案需要引入量子态制备和额外的测量环节, 但能显著降低量子态层析的时间复杂度. 对于维数为d的待重构密度矩阵, 当所用的量子算法涉及的矩阵的条件数$ \kappa $和估计精度$ \varepsilon $的倒数的复杂度均为$ O(\mathrm{poly}\log d) $, 且所需同时制备的量子态数目规模是$ O(d) $时, 本方案可将量子态层析整体算法的时间复杂度从$ O(d^4) $降为$ O(d \mathrm{poly}\log d) $.
    Recently, we try to answer the following question: what will happen to our life if quantum computers can be physically realized. In this research, we explore the impact of quantum algorithms on the time complexity of quantum state tomography based on the linear regression algorithm if quantum states can be efficiently prepared by classical information and quantum algorithms can be implemented on quantum computers. By studying current quantum algorithms based on quantum singular value decomposition (SVE) of calculating matrix multiplication, solving linear equations and eigenvalue and eigenstate estimation and so on, we propose a novel scheme to complete the mission of quantum state tomography. We show the calculation based on our algorithm as an example at last. Although quantum state preparations and extra measurements are indispensable in our quantum algorithm scheme compared with the existing classical algorithm, the time complexity of quantum state tomography can be remarkably declined. For a quantum system with dimension d, the entire quantum scheme can reduce the time complexity of quantum state tomography from $ O(d^{4}) $ to $ O(d\mathrm{poly}\log d) $ when both the condition number $ \kappa $ of related matrices and the reciprocal of precision $ \varepsilon $ are $ O(\mathrm{poly}\log d) $, and quantum states of the same order $ O(d) $ can be simultaneously prepared. This is in contrast to the observation that quantum algorithms can reduce the time complexity of quantum state tomography to $O(d^3) $ when quantum states can not be efficiently prepared. In other words, the preparing of quantum states efficiently has become a bottleneck constraining the quantum acceleration.
      通信作者: 张明, yas-zm@163.com
    • 基金项目: 国家自然科学基金(批准号: 61673389, 61273202, 61134008)资助的课题.
      Corresponding author: Zhang Ming, yas-zm@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61673389, 61273202, 61134008).
    [1]

    Teo Y S 2016 Introduction to quantum-state estimation (Singapore: World Scientific Press) pp1−5, 23−31

    [2]

    Häffner H, Hänsel W, Roos C, et al 2005 Nature 438 643Google Scholar

    [3]

    James D F V, Kwiat P G, Munro W J, et al. 2001 Phys. Rev. A 64 052312Google Scholar

    [4]

    Qi B, Hou Z, Li L, et al. 2013 Sci. Rep. 3 3496Google Scholar

    [5]

    Hou Z, Zhong H-S, Tian Y, et al. 2016 New J. Phys. 18 083036Google Scholar

    [6]

    Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504Google Scholar

    [7]

    Teo Y S, Zhu H, Englert B G, et al. 2011 Phys. Rev. Lett. 107 020404Google Scholar

    [8]

    Blume-Kohout R 2010 New J. Phys. 12 043034Google Scholar

    [9]

    Huszár F, Houlsby N M T 2012 Phys. Rev. A 85 052120Google Scholar

    [10]

    Shor P W 1999 SIREV 41 303Google Scholar

    [11]

    Abrams D S, Lloyd S 1999 Phys. Rev. Lett. 83 5162Google Scholar

    [12]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [13]

    Wiebe N, Braun D, Lloyd S 2012 Phys. Rev. Lett. 109 050505Google Scholar

    [14]

    陆思聪, 郑昱, 王晓霆, 吴热冰 2017 控制理论与应用 34 1429

    Lu S C, Zheng Y, Wang X T, Wu R B 2017 Contl. Theor. Appl. 34 1429

    [15]

    Smolin J A, Gambetta J M, Smith G 2012 Phys. Rev. Lett. 108 070502Google Scholar

    [16]

    Shao C 2018 arXiv preprint arXiv: 1803 01601

    [17]

    Wossnig L, Zhao Z K, Prakash A 2018 Phys. Rev. Lett. 120 050502Google Scholar

    [18]

    Høyer P, Neerbek J, Shi Y 2002 Algorithmica 34 429Google Scholar

    [19]

    Cheng S T, Wang C Y 2006 IEEE Trans. Circuits Syst. I: Reg. Papers 53 316Google Scholar

    [20]

    Kerenidis I, Prakash A 2017 Proceedings of 8th Innovations in Theoretical Computer Science Conference Berkeley, CA, USA, January 9−11, 2017 p1

    [21]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Anniversary Edition) (Cambridge: Cambridge University Press) pp185−188

  • 图 1  基于线性回归估计的经典重构算法

    Fig. 1.  Classical algorithm of quantum state tomography via linear regression

    图 2  整体量子算法简明过程

    Fig. 2.  Concise process of the whole quantum algorithm

    图 3  量子算法过程1: 基于线性回归模型重构算法的量子算法

    Fig. 3.  Quantum algorithm process 1: quantum algorithm based on quantum state tomography via linear regression

    图 4  量子算法过程2

    Fig. 4.  Quantum algorithm process 2

    表 1  量子态重构过程不同环节的量子算法与经典算法时间复杂度的对比

    Table 1.  Time complexity comparison of each step between quantum algorithm and classical algorithm for reconstructing quantum state

    算法过程 时间复杂度
    量子态制备过程: 经典 量子
    1) ${ X}\rightarrow|{ X}\rangle$ $O(d\log (d)/\varepsilon ^2)$
    2) ${ Y}\rightarrow|{ Y}\rangle$ $O(d\log (d)/\varepsilon ^2)$
    3) $\{\varOmega_i\}\rightarrow\{|\varOmega_i\rangle\}$ $O(d\log (d)/\varepsilon ^2)$
    最小二乘求解过程: 经典 量子
    1) ${ X}^{\rm T}{ X}$ $O(d^4)$ $O(\kappa^3 d/\varepsilon )$
    2) $({ X}^{\rm T}{ X})^{-1}$ $O(d^4)$ $O(\kappa^2\sqrt{d}\mathrm{poly}\log(d)/\varepsilon )$
    3) ${ X}^{\rm T}{ Y}$ $O(d^4)$ $O(\kappa^3 d/\varepsilon )$
    使用估计出的参数重构密度矩阵$\hat{\mu}$: 经典 量子
    1) ${ I}/d+\sum_{i=1}^{d}\hat{\varTheta}_i\varOmega_i$ $O(d^4)$ $O(\kappa^3 d/\varepsilon )$
    寻找与矩阵$\hat{\mu}$最接近的目标密度矩阵$\hat{\rho}$: 经典 量子
    1) 求解矩阵$\hat{\mu}$的本征值和本征态$\{|\bar{\mu}_i\rangle|\hat{\mu}_i\rangle\}$ $O(d^3)$ $O(\kappa\sqrt{r}\mathrm{poly}\log d/\varepsilon )$
    2) 测量得到$\hat{\mu}$本征值数值$\{\bar{\mu} _i\}$ $O(d)$
    3) 将$\hat{\mu}$的本征值数据制备成量子态 $\{\bar{\mu} _i\}\rightarrow\{|\bar{\mu} _i\rangle\}$ $O(d\log(d)/\varepsilon ^2)$
    4) 对矩阵$\hat{\mu}$的本征值进行排序 $O(d)$ $O((\log d)^2)$
    5) 一般运算得到矩阵$\hat{\rho}$的本征值$\{\lambda_i\}$或$\{|\lambda_i\rangle\}$ $O(d)$ $O(d)$
    6) 由$\hat{\rho}$的本征值及$\{|\hat{\mu}_i\rangle\}$得到$\hat{\rho}=\sum_i\lambda_i|\hat{\mu}_i\rangle\langle\hat{\mu}_i|$ $O(d^3)$ $O(\kappa^3 \sqrt{d}/\varepsilon )$
    下载: 导出CSV

    表 A1  求解厄米矩阵本征值和本征态的量子算法[17]

    Table A1.  Quantum algorithm for calculating the eigenvalues and eigenstates of Hermite matrix[17]

    1) 制备输入态$|{{b}}\rangle=\sum_i\beta_i|{{v}}_i\rangle$, 其中${{v}}_i$是矩阵A的奇异向量
    2) 分别对矩阵A及${ A}+\eta { I}$使用奇异值估计算法, 精度$\delta<1/2\kappa$并且$\eta=1/\kappa$, 得到$\sum_i\beta_i|{{v}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B||\bar{\lambda}_i+\eta|\rangle_C\rangle$
    3) 增加一辅助寄存器D, 当寄存器B的值大于C 时, 将D置为1, 然后应用一受控于此辅助位的条件相位门:
    $\qquad\sum_i(-1)^{f_i}\beta_i|{{v}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B||\bar{\lambda}_i+\eta|\rangle_C\rangle|f_i\rangle_D$
    4) 对寄存器C进行量子算法的逆运算, 得到态
    $\qquad\sum_i(-1)^{f_i}\beta_i|{{v}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B|f_i\rangle_D$
    5) 将奇异向量$|{{v}}_i\rangle_{ A}$转化到矩阵的本征态$|{{\mu}}_i\rangle_{ A}$上: 相应于正本征值的奇异向量不变, 相应于负本征值的奇异向量乘以–1 , 得到
    $\qquad\sum_i(-1)^{f_i}\beta_i|{{\mu}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B$
    下载: 导出CSV
  • [1]

    Teo Y S 2016 Introduction to quantum-state estimation (Singapore: World Scientific Press) pp1−5, 23−31

    [2]

    Häffner H, Hänsel W, Roos C, et al 2005 Nature 438 643Google Scholar

    [3]

    James D F V, Kwiat P G, Munro W J, et al. 2001 Phys. Rev. A 64 052312Google Scholar

    [4]

    Qi B, Hou Z, Li L, et al. 2013 Sci. Rep. 3 3496Google Scholar

    [5]

    Hou Z, Zhong H-S, Tian Y, et al. 2016 New J. Phys. 18 083036Google Scholar

    [6]

    Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504Google Scholar

    [7]

    Teo Y S, Zhu H, Englert B G, et al. 2011 Phys. Rev. Lett. 107 020404Google Scholar

    [8]

    Blume-Kohout R 2010 New J. Phys. 12 043034Google Scholar

    [9]

    Huszár F, Houlsby N M T 2012 Phys. Rev. A 85 052120Google Scholar

    [10]

    Shor P W 1999 SIREV 41 303Google Scholar

    [11]

    Abrams D S, Lloyd S 1999 Phys. Rev. Lett. 83 5162Google Scholar

    [12]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [13]

    Wiebe N, Braun D, Lloyd S 2012 Phys. Rev. Lett. 109 050505Google Scholar

    [14]

    陆思聪, 郑昱, 王晓霆, 吴热冰 2017 控制理论与应用 34 1429

    Lu S C, Zheng Y, Wang X T, Wu R B 2017 Contl. Theor. Appl. 34 1429

    [15]

    Smolin J A, Gambetta J M, Smith G 2012 Phys. Rev. Lett. 108 070502Google Scholar

    [16]

    Shao C 2018 arXiv preprint arXiv: 1803 01601

    [17]

    Wossnig L, Zhao Z K, Prakash A 2018 Phys. Rev. Lett. 120 050502Google Scholar

    [18]

    Høyer P, Neerbek J, Shi Y 2002 Algorithmica 34 429Google Scholar

    [19]

    Cheng S T, Wang C Y 2006 IEEE Trans. Circuits Syst. I: Reg. Papers 53 316Google Scholar

    [20]

    Kerenidis I, Prakash A 2017 Proceedings of 8th Innovations in Theoretical Computer Science Conference Berkeley, CA, USA, January 9−11, 2017 p1

    [21]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Anniversary Edition) (Cambridge: Cambridge University Press) pp185−188

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响. 物理学报, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [3] 李天胤, 邢宏喜, 张旦波. 基于量子计算的高能核物理研究. 物理学报, 2023, 72(20): 200303. doi: 10.7498/aps.72.20230907
    [4] 周文豪, 王耀, 翁文康, 金贤敏. 集成光量子计算的研究进展. 物理学报, 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [5] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [6] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [7] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [8] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [9] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算. 物理学报, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [10] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析. 物理学报, 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [11] 孙克辉, 贺少波, 尹林子, 阿地力·多力坤. 模糊熵算法在混沌序列复杂度分析中的应用. 物理学报, 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [12] 孙克辉, 贺少波, 盛利元. 基于强度统计算法的混沌序列复杂度分析. 物理学报, 2011, 60(2): 020505. doi: 10.7498/aps.60.020505
    [13] 杨汝, 张波, 赵寿柏, 劳裕锦. 基于符号时间序列方法的开关变换器离散映射算法复杂度分析. 物理学报, 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [14] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [15] 张 淼, 贾焕玉, 姬晓辉, 司 坤, 韦联福. 制备囚禁冷离子的振动压缩量子态. 物理学报, 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [16] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [17] 胡学宁, 李新奇. 量子点接触对单电子量子态的量子测量. 物理学报, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
    [18] 刘 清, 邹 丹, 嵇英华. 交流源作用下介观RLC电路系统量子态随时间的演化. 物理学报, 2006, 55(4): 1596-1601. doi: 10.7498/aps.55.1596
    [19] 王忠纯. 外场驱动对Tavis-Cummings模型中量子态保真度的影响. 物理学报, 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [20] 刘堂昆, 王继锁, 柳晓军, 詹明生. 纠缠态原子偶极间相互作用对量子态保真度的影响. 物理学报, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
计量
  • 文章访问数:  11700
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-27
  • 修回日期:  2019-04-27
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回