搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti纳米粒子熔化与凝结的原子尺度模拟

王亚明 刘永利 张林

引用本文:
Citation:

Ti纳米粒子熔化与凝结的原子尺度模拟

王亚明, 刘永利, 张林

Simulations of Ti nanoparticles upon heating and cooling on an atomic scale

Wang Ya-Ming, Liu Yong-Li, Zhang Lin
PDF
HTML
导出引用
  • 本文采用基于嵌入原子势的分子动力学方法模拟研究了不同尺寸Ti纳米粒子在熔化与凝结过程中的原子堆积结构变化. 温度变化过程中对Ti纳米粒子中原子平均能量、对分布函数、键对和比热容的计算结果表明, 粒子尺寸和温度变化方式对粒子的结构转变具有重要影响. 小尺寸Ti粒子更易于形成二十面体构型. 随着Ti纳米粒子粒径的增大, 室温下粒子趋于保持初始密排六方的堆积结构. 升温过程中, 大粒径的纳米粒子内出现HCP向BCC的部分结构转变, 导致HCP和BCC结构共存现象. 大粒径粒子的熔化与体相材料相似, 具有一个熔化温度. 熔融粒子降温时, 纳米粒子内部原子发生熔融态→BCC→HCP堆积结构的转变, 且凝结温度较熔化温度滞后. 该原子尺度的模拟提供了可用经典理论估算Ti粒子熔化所需能量的临界尺寸.
    Titanium (Ti) has many advantages including high specific strength, low density, and biocompatibility, and is an excellent option for biomedical implant applications. Traditionally manufacturing processes have great difficulties in processing the hexagonal α-Ti with complex geometries, which would be transformed into the BCC β-Ti at high temperatures. Additive manufacturing (AM) or metal three-dimensional(3D) printing has made it possible to accurately fabricate Ti products with complex morphology. As nanoparticles have been used in the AM processing, an interesting issue arises naturally to understand packing changes of Ti particles with nanometer size during heating and cooling. The information provides the possibility in understanding the processing-structure-property-performance relations in the AM processes with the intent of producing the desirable microstructural features, and thus achieving the mechanical properties comparable or even superior to the conventionally manufactured parts. Because of lacking appropriate experimental techniques, computational approach becomes a good option to obtain various static and dynamic properties of metals reliably, in bulk or surface configurations. On a nanoscale, as the number of atoms in one particle increases, the computational cost increases exponentially and the data complexity increases correspondingly. Molecular dynamics (MD) simulation is a well-established technique to characterize microscopic details in these systems involving combined behaviors of atom movements and locally structural rearrangements. In this paper we conduct the simulations within the framework of embedded atom method provided by Pasianot et al. to study packing transformations of Ti nanoparticles upon heating and cooling on an atomic scale. Based on the calculation of the potential energy per atom, pair distribution function, pair analysis, and the specific heat capacity, the results show that the particle size and temperature changes play key roles in the packing transformations. Small size particles preferentially form icosahedral geometries. As the particle size increases, particles can hold their HCP packing at room temperature. Upon heating, the structural transformation from HCP to BCC occurs in these large size particles, and there coexist the HCP structure and the BCC structure. At a high temperature, these particles present the melting behavior similar to that of the bulk phase. When the molten particles are cooled, the atoms in the particles undergo melting-BCC-HCP structural transition, and the freezing temperature lags behind the melting temperature. The simulations provide an estimate of the critical size, and are applicable to classical theory for melting the Ti particles.
      通信作者: 张林, zhanglin@imp.neu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0701304)和国家自然科学基金(批准号: 51671051)资助的课题.
      Corresponding author: Zhang Lin, zhanglin@imp.neu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFB0701304) and the National Natural Science Foundation of China (Grant No. 51671051).
    [1]

    Sharpless N E, DePinho R A 2007 Nat. Rev. Mol. Cell Biol. 8 703Google Scholar

    [2]

    Griffith L G, Naughton G 2002 Science 295 1009Google Scholar

    [3]

    Stoltz J 2012 Regener. Med. Cell. Ther. 77 111

    [4]

    Amini A R, Laurencin C P, Nukavarapu S P 2012 Crit. Rev. Biomed. Eng. 40 363Google Scholar

    [5]

    Wysocki B, Idaszek J, Szlązak K, Strzelczyk K, Brynk T, Kurzydlowski K J, Święszkoski W 2016 Materials 9 197215

    [6]

    Elias C N, Lima J H C, Valiev R, Meyers M A 2008 JOM 60 46

    [7]

    Attar H, Calin M, Zhang L C, Scudino S, Eckert J 2014 Mater. Sci. Eng. A 593 170Google Scholar

    [8]

    Zhang L C, Attar H 2016 Adv. Eng. Mater. 18 463Google Scholar

    [9]

    Froes F H 2012 Adv. Mater. Processes 170 16

    [10]

    Urlea V, Brailovski V 2017 J. Mater. Process. Technol. 242 1Google Scholar

    [11]

    Herzog D, Sevda V, Wycik E, Emmelmann C 2016 Acta Mater. 117 371Google Scholar

    [12]

    Bourell D, Kruth J P, Leu M, Levy G, Rosen D, Beese A M, Clare A 2017 CIRP Annals Manuf. Technol. 66 659Google Scholar

    [13]

    Liu Y J, Li S J, Wang H L, Hou W T, Hao Y L, Yang R, Sercombe T B, Zhang L C 2016 Acta Mater. 113 56Google Scholar

    [14]

    Prashanth K G, Shahabi H S, Attar H, Srivastava V C, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S 2015 Add. Manuf. 6 1

    [15]

    Zhang L C, Klemm D, Eckert J, Hao Y L, Sercombe T B 2011 Scrip. Mater. 65 21

    [16]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [17]

    Sames W J, List F A, Pannala S, Dehoff R R, Babu S S 2016 Int. Mat. Rev. 61 315Google Scholar

    [18]

    Piseri P, Mazza T, Bongiorno G, Lenardi C, Ravagnan L, Foglia F D, DiFonzo F, Coreno M, DeSimone M, Prince K C, Milani P 2006 New J. Phys. 8 136Google Scholar

    [19]

    Qu X 2017 Mater. Sci. Technol. 33 822Google Scholar

    [20]

    Buesser B, Pratsinis S E 2015 J. Phys. Chem. C 119 10116Google Scholar

    [21]

    Mazzone A M 2000 Philos. Mag. B 80 95Google Scholar

    [22]

    Chepkasov I V, Gafner Y Y, Gafner S L 2016 J. Aerosol Sci. 91 33Google Scholar

    [23]

    Gould A L, Logsdail A J, Catlow C R A 2015 J. Phys. Chem. C 119 623Google Scholar

    [24]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [25]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [26]

    Levchenko E V, Evteev A V, Lorscheider T, Belova I V, Murch G E 2013 Comput. Mater. Sci. 79 316Google Scholar

    [27]

    Zhang L 2019 Adv. Eng. Mater. 21 1800531Google Scholar

    [28]

    Zhang L 2019 Prog. Nat. Sci.: Mater. Inter. 29 237 Google Scholar

    [29]

    Mendelev M I, Underwood T L, Ackland G J 2016 J. Chem. Phys. 145 154

    [30]

    Farkas D 1994 Modell. Simul. Mater. Sci. Eng. 2 975Google Scholar

    [31]

    Pasianot R, Savino E 1992 Phys. Rev. B 45 12704Google Scholar

    [32]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [33]

    钱泽宇, 张林 2015 物理学报 64 243103Google Scholar

    Qian Z Y, Zhang L 2015 Acta Phys. Sin. 64 243103Google Scholar

    [34]

    张林, 李蔚, 刘永利, 孙本哲, 王佳庆 2011 金属学报 47 1080

    Zhang L, Li W, Liu Y L, Sun B Z, Wang J Q 2011 Acta Metall. Sin. 47 1080

    [35]

    宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104Google Scholar

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104Google Scholar

    [36]

    Tayson W R, Miller W A 1977 Surf. Sci. 62 267Google Scholar

    [37]

    Aghemenloh E, Idiodi J O A, Azi S O 2009 Comput. Mater. Sci. 10 1016

    [38]

    姬德朋, 王绍青 2015 金属学报 51 597Google Scholar

    Ji D P, Wang S Q 2015 Acta Metall. Sin. 51 597Google Scholar

    [39]

    汤剑锋 2016 博士学位论文(长沙: 湖南大学)

    Tang J F 2016 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)

    [40]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248Google Scholar

    [41]

    Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutschera G, Ben-Davida T, Penissonc J M, Bourret A 1994 Surf. Sci. 303 231Google Scholar

    [42]

    冯黛丽, 冯妍卉, 张欣欣 2013 物理学报 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [43]

    汪志刚, 吴亮, 张杨, 文玉华 2011 物理学报 60 096105

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105

    [44]

    Zhang L, Sun H X 2010 Phys. Status. Solidi. A 207 1178Google Scholar

    [45]

    Xu S N, Zhang L, Qi Y, Zhang C B 2010 Phys. B 405 632Google Scholar

  • 图 1  300 K下势能随时间步的变化

    Fig. 1.  The potential energy varying with timesteps.

    图 2  原子间键对示意图

    Fig. 2.  Schematic diagram of atomic pairs.

    图 3  原子平均能量随温度的变化

    Fig. 3.  The average energy per atom for Ti nanoparticles with different sizes.

    图 4  Ti13对分布函数和原子堆积二维投影图

    Fig. 4.  The pair distribution functions and atomic packing of the Ti13.

    图 5  Ti57粒子在升温-降温过程中不同温度下的对分布函数 (a)升温; (b)降温

    Fig. 5.  The pair distribution functions of Ti57 nanoparticles under heating and cooling processes: (a) Heating process; (b) cooling process.

    图 6  Ti401粒子在升温-降温过程中不同温度下的对分布函数 (a)升温; (b)降温

    Fig. 6.  The pair distribution functions of Ti401 nanoparticles under heating and cooling processes: (a) Heating process; (b) cooling process.

    图 7  Ti1111纳米粒子的键对比例分数随温度变化曲线 (a)升温; (b)降温

    Fig. 7.  Variations of pair fraction in Ti1111 nanoparticles: (a) Heating process; (b) cooling process.

    图 8  Ti纳米粒子势能-温度斜率随粒径的变化

    Fig. 8.  Slope of potential-temperature varying with the diameters of Ti nanoparticles.

  • [1]

    Sharpless N E, DePinho R A 2007 Nat. Rev. Mol. Cell Biol. 8 703Google Scholar

    [2]

    Griffith L G, Naughton G 2002 Science 295 1009Google Scholar

    [3]

    Stoltz J 2012 Regener. Med. Cell. Ther. 77 111

    [4]

    Amini A R, Laurencin C P, Nukavarapu S P 2012 Crit. Rev. Biomed. Eng. 40 363Google Scholar

    [5]

    Wysocki B, Idaszek J, Szlązak K, Strzelczyk K, Brynk T, Kurzydlowski K J, Święszkoski W 2016 Materials 9 197215

    [6]

    Elias C N, Lima J H C, Valiev R, Meyers M A 2008 JOM 60 46

    [7]

    Attar H, Calin M, Zhang L C, Scudino S, Eckert J 2014 Mater. Sci. Eng. A 593 170Google Scholar

    [8]

    Zhang L C, Attar H 2016 Adv. Eng. Mater. 18 463Google Scholar

    [9]

    Froes F H 2012 Adv. Mater. Processes 170 16

    [10]

    Urlea V, Brailovski V 2017 J. Mater. Process. Technol. 242 1Google Scholar

    [11]

    Herzog D, Sevda V, Wycik E, Emmelmann C 2016 Acta Mater. 117 371Google Scholar

    [12]

    Bourell D, Kruth J P, Leu M, Levy G, Rosen D, Beese A M, Clare A 2017 CIRP Annals Manuf. Technol. 66 659Google Scholar

    [13]

    Liu Y J, Li S J, Wang H L, Hou W T, Hao Y L, Yang R, Sercombe T B, Zhang L C 2016 Acta Mater. 113 56Google Scholar

    [14]

    Prashanth K G, Shahabi H S, Attar H, Srivastava V C, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S 2015 Add. Manuf. 6 1

    [15]

    Zhang L C, Klemm D, Eckert J, Hao Y L, Sercombe T B 2011 Scrip. Mater. 65 21

    [16]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [17]

    Sames W J, List F A, Pannala S, Dehoff R R, Babu S S 2016 Int. Mat. Rev. 61 315Google Scholar

    [18]

    Piseri P, Mazza T, Bongiorno G, Lenardi C, Ravagnan L, Foglia F D, DiFonzo F, Coreno M, DeSimone M, Prince K C, Milani P 2006 New J. Phys. 8 136Google Scholar

    [19]

    Qu X 2017 Mater. Sci. Technol. 33 822Google Scholar

    [20]

    Buesser B, Pratsinis S E 2015 J. Phys. Chem. C 119 10116Google Scholar

    [21]

    Mazzone A M 2000 Philos. Mag. B 80 95Google Scholar

    [22]

    Chepkasov I V, Gafner Y Y, Gafner S L 2016 J. Aerosol Sci. 91 33Google Scholar

    [23]

    Gould A L, Logsdail A J, Catlow C R A 2015 J. Phys. Chem. C 119 623Google Scholar

    [24]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [25]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [26]

    Levchenko E V, Evteev A V, Lorscheider T, Belova I V, Murch G E 2013 Comput. Mater. Sci. 79 316Google Scholar

    [27]

    Zhang L 2019 Adv. Eng. Mater. 21 1800531Google Scholar

    [28]

    Zhang L 2019 Prog. Nat. Sci.: Mater. Inter. 29 237 Google Scholar

    [29]

    Mendelev M I, Underwood T L, Ackland G J 2016 J. Chem. Phys. 145 154

    [30]

    Farkas D 1994 Modell. Simul. Mater. Sci. Eng. 2 975Google Scholar

    [31]

    Pasianot R, Savino E 1992 Phys. Rev. B 45 12704Google Scholar

    [32]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [33]

    钱泽宇, 张林 2015 物理学报 64 243103Google Scholar

    Qian Z Y, Zhang L 2015 Acta Phys. Sin. 64 243103Google Scholar

    [34]

    张林, 李蔚, 刘永利, 孙本哲, 王佳庆 2011 金属学报 47 1080

    Zhang L, Li W, Liu Y L, Sun B Z, Wang J Q 2011 Acta Metall. Sin. 47 1080

    [35]

    宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104Google Scholar

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104Google Scholar

    [36]

    Tayson W R, Miller W A 1977 Surf. Sci. 62 267Google Scholar

    [37]

    Aghemenloh E, Idiodi J O A, Azi S O 2009 Comput. Mater. Sci. 10 1016

    [38]

    姬德朋, 王绍青 2015 金属学报 51 597Google Scholar

    Ji D P, Wang S Q 2015 Acta Metall. Sin. 51 597Google Scholar

    [39]

    汤剑锋 2016 博士学位论文(长沙: 湖南大学)

    Tang J F 2016 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)

    [40]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248Google Scholar

    [41]

    Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutschera G, Ben-Davida T, Penissonc J M, Bourret A 1994 Surf. Sci. 303 231Google Scholar

    [42]

    冯黛丽, 冯妍卉, 张欣欣 2013 物理学报 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [43]

    汪志刚, 吴亮, 张杨, 文玉华 2011 物理学报 60 096105

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105

    [44]

    Zhang L, Sun H X 2010 Phys. Status. Solidi. A 207 1178Google Scholar

    [45]

    Xu S N, Zhang L, Qi Y, Zhang C B 2010 Phys. B 405 632Google Scholar

  • [1] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [2] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿. 物理学报, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [3] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性. 物理学报, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [4] 钱泽宇, 张林. 熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟. 物理学报, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [5] 卢志鹏, 祝文军, 卢铁城, 孟川民, 徐亮, 李绪海. 高温高压下过渡金属Ru的结构相变. 物理学报, 2013, 62(17): 176402. doi: 10.7498/aps.62.176402
    [6] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [7] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [8] 邵琛玮, 王振华, 李艳男, 赵骞, 张林. AuCu249合金团簇热稳定性的原子尺度计算研究. 物理学报, 2011, 60(8): 083602. doi: 10.7498/aps.60.083602
    [9] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [10] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [11] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [12] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [13] 王震遐, 王 森, 胡建刚, 俞国军. 多壁碳纳米管在循环相变过程中结构变化初探. 物理学报, 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
    [14] 张可言. 金属材料在中强度激光辐照下的相变速度研究. 物理学报, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [15] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [16] 刘让苏, 覃树萍, 侯兆阳, 陈晓莹, 刘凤翔. 液态金属In凝固过程中微观结构转变的模拟研究. 物理学报, 2004, 53(9): 3119-3124. doi: 10.7498/aps.53.3119
    [17] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [18] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合. 物理学报, 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [19] 袁坚, 任勇, 刘锋, 山秀明. 复杂计算机网络中的相变和整体关联行为. 物理学报, 2001, 50(7): 1221-1225. doi: 10.7498/aps.50.1221
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  9269
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-21
  • 修回日期:  2019-06-06
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回