搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂网络电输运性能与通信序列熵之间的关联

陈单 石丹丹 潘贵军

引用本文:
Citation:

复杂网络电输运性能与通信序列熵之间的关联

陈单, 石丹丹, 潘贵军

Correlation between the electrical transport performance and the communicability sequence entropy in complex networks

Chen Dan, Shi Dan-Dan, Pan Gui-Jun
PDF
HTML
导出引用
  • 网络的电输运性能优化, 不仅有助于理解网络的结构与功能关系, 而且对于提升电气工程技术也有着非常重要的意义. 从信息的角度看待网络, 寻求影响网络电输运性能的信息结构测度是解决这一问题的有效途径. 最近的研究表明, 复杂网络的通信序列熵可以有效地量化网络的整体结构信息. 本文将探讨其表征网络电输运性能的能力, 其中主要研究了小世界网络、无标度网络、关联无标度网络、 社团网络以及IEEE57等节点网络的通信序列熵和电输运性能之间的关联特性. 研究结果表明, 对于以上这些网络, 它们的电输运性能是关于通信序列熵的单调递增函数, 与通信序列熵成正关联特性. 该规律的发现为设计高传输效率的电力网络提供了一个有效的策略, 即可以通过提高网络的通信序列熵来优化其电输运性能.
    Optimization of the network’s electrical transport properties not only conduces to understanding the relationship between structure and network function, but also can improve the electrical engineering technology. The effective way to solve this problem is to treat the network from the information viewpoint and seek the information structure measure which affects crucially the network electrical transport performance. Recent studies have shown that the communicability sequence entropy of complex networks can effectively quantify the global structural information of networks. Based on this measure, the difference between networks can be quantified effectively, and the connotation of communicability sequence entropy is explained. In this paper, we predict that the electrical transport performance of complex networks has a strong correlation with the communicability sequence entropy. For this reason, we mainly study the correlation characteristics of the electrical transport performance and communicability sequence entropy of small-world networks, scale-free networks, degree-correlated scale-free networks, community networks, and IEEE57 and other electrical node networks. The results show that the electrical transport performances of these networks are all a monotonically increasing function of communicability sequence entropy, namely, the communicability sequence entropy, and the electrical transport properties have a positive correlation. Specifically, in the process evolving from a regular network to a small-world network, the communicability sequence entropy and electrical transport performance of the network increase gradually. For scale-free networks, in the process of increasing degree distribution exponent, communicability sequence entropy and electrical transport performance of the network increase gradually. For degree-correlated scale-free networks, during the evolution from assortative to disassortative topology, communicability sequence entropy and electrical transport performance both decrease gradually. For networks with community structure, the communicability sequence entropy and electrical transport performance decrease with the increase of the number of communities. Finally, the correlation between communicability sequence entropy and electrical transport performance of two classical node power supply networks and corresponding randomization network models are also studied. The results show that as the order of d increases, both communicability sequence entropy and electrical transport performance decrease. And both are getting closer to the original network's communicability sequence entropy and electrical transport performance. The rule is beneficial to providing an effective strategy for designing a high transmission efficiency of the power network, that is, we can optimize the electrical transport performance by improving the network communicability sequence entropy.
      通信作者: 潘贵军, pangj8866@hubu.edu.cn
    • 基金项目: 湖北省教育基金会(批准号: D20120104)资助的课题.
      Corresponding author: Pan Gui-Jun, pangj8866@hubu.edu.cn
    • Funds: Project supported by the Education Foundation of Hubei Province, China (Grant No. D20120104).
    [1]

    Dorogovtsev S N, Mendes J F F 2003 Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford: Oxford University Press) p2

    [2]

    汪小帆, 李翔, 陈关荣 2006 复杂网络理论及其应用(北京: 清华大学出版社) 第1页

    Wang X F, Li X, Chen G R 2006 Complex Network Theory and Application (Beijing: Tsinghua University Press) p1 (in Chinese)

    [3]

    Barabási A L 2016 Network Science (Cambridge: Cambridge University Press) p5

    [4]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [5]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [6]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [7]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [8]

    Cohen R, Havlin S 2010 Complex Networks: Structure, Robustness and Function (Cambridge: Cambridge University Press) p26, p181

    [9]

    Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press) p23

    [10]

    Kleinberg J M 2000 Nature 406 845Google Scholar

    [11]

    Roberson M R, Ben-Avraham D 2006 Phys. Rev. E 74 017101Google Scholar

    [12]

    Li G, Reis S D S, Moreira A A, Havlin S, Stanley H E, Andrade J S 2010 Phys. Rev. Lett. 104 018701Google Scholar

    [13]

    Li G, Reis S D S, Moreira A A, Havlin S, Stanley H E, Andrade J S 2013 Phys. Rev. E 87 042810Google Scholar

    [14]

    Pan G J, Niu R W 2016 Physica A 463 509Google Scholar

    [15]

    Niu R W, Pan G J 2016 Physica A 461 9Google Scholar

    [16]

    Lopez E, Buldyrev S V, Havlin S, Stanley H E 2005 Phys. Rev. Lett. 94 248701Google Scholar

    [17]

    Lopez E, Carmib S, Havlin S, Buldyrev S V, Stanley H E 2006 Physica D 224 69Google Scholar

    [18]

    Carmi1 S, Wu Z, Lopez E, Havlin S, Stanley H E 2007 Eur. Phys. J. B 57 165Google Scholar

    [19]

    Baba A O, Bamaarouf O, Rachadi A, Ez-Zahraouy H 2017 Int. J. Mod. Phys. C 28 1750064Google Scholar

    [20]

    Xue Y H, Wang J, Li L, He D, Hu B 2010 Phys. Rev. E 81 037101Google Scholar

    [21]

    Asztalos A, Sreenivasan S, Szymanski B K, Korniss G 2012 Eur. Phys. J. B 85 288Google Scholar

    [22]

    Oliveira C L N, Morais P A, Moreira A A, Andrade J S 2014 Phys. Rev. Lett. 112 148701Google Scholar

    [23]

    蔡萌, 杜海峰, 任义科, 费尔德曼 M 2011 物理学报 60 110513Google Scholar

    Cai M, Du H F, Ren Y K, Feldman M 2011 Acta Phys. Sin. 60 110513Google Scholar

    [24]

    Hu Y, Wang Y, Li D, Havlin S, Di Z 2011 Phys. Rev. Lett. 106 108701Google Scholar

    [25]

    李勇军, 尹超, 于会, 刘尊 2016 物理学报 65 020501Google Scholar

    Li Y J, Yin C, Yu H, Liu Z 2016 Acta Phys. Sin. 65 020501Google Scholar

    [26]

    黄丽亚, 霍宥良, 王青, 成谢锋 2019 物理学报 68 018901Google Scholar

    Huang L Y, Huo Y L, Wang Q, Cheng X F 2019 Acta Phys. Sin. 68 018901Google Scholar

    [27]

    Wang B, Tang H W, Guo C H, Xiu Z L 2006 Physica A 363 591Google Scholar

    [28]

    吴俊, 谭跃进, 郑宏钟, 朱大智 2007 系统工程理论与实践 27 101Google Scholar

    Wu J, Tan Y J, Zheng H Z, Zhu D Z 2007 System Eng. Theor. Prac. 27 101Google Scholar

    [29]

    蔡萌, 杜海峰, 费尔德曼 M 2014 物理学报 63 060504Google Scholar

    Cai M, Du H F, Feldman M W 2014 Acta Phys. Sin. 63 060504Google Scholar

    [30]

    Cai M, Cui Y, Stanley H E 2017 Sci. Rep. 7 9340Google Scholar

    [31]

    Braunstein S L, Ghosh S, Severini S 2006 Ann. Comb. 10 291Google Scholar

    [32]

    de Domenico M, Biamonte J 2016 Phys. Rev. X 6 041062

    [33]

    Chen D, Shi D D, Qin M, Xu S M, Pan G J 2018 Phys. Rev. E 98 012319

    [34]

    Estrada E, Hatano N 2008 Phys. Rev. E 77 036111Google Scholar

    [35]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [36]

    Estrada E 2012 Linear Algebra Appl. 436 4317Google Scholar

    [37]

    Wu J J, Gao Z Y, Sun H J 2006 Phys. Rev. E 74 066111Google Scholar

    [38]

    Gao J, Barzel B, Barabási A L 2016 Nature 530 307Google Scholar

    [39]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701Google Scholar

    [40]

    Johnson S, Torres J, Marro J, Munñoz M A 2010 Phys. Rev. Lett. 104 108702Google Scholar

    [41]

    Erdös P, Rényi A 1959 Publ. Math. Debrecen 6 290

    [42]

    Orsini C, Dankulov M M, Colomer-de-Simón P, Jamakovic A, Mahadevan P, Vahdat A, Bassler K E, Toroczkai Z, Boguñá M, Caldarelli G, Fortunato S, Krioukov D 2015 Nat. Commun. 6 8627Google Scholar

  • 图 1  完全网络任意一对节点之间等效电导的计算过程

    Fig. 1.  The calculation of equivalent conductance between any pair of nodes in a complete network.

    图 2  WS小世界网络的(a)通信序列熵$S_N$和(b) 平均全局电导$\left\langle G \right\rangle$与重连概率$P_{\rm rew}$的依赖关系; (c), (d)相应的$S_N$$\left\langle G \right\rangle$之间的关系

    Fig. 2.  Dependence of (a) communicability sequence entropy $S_N$ and (b) mean global conductance $\left\langle G \right\rangle$ on rewiring probability of WS small-world network; (c) , (d) the relation between $S_N$ and $\left\langle G \right\rangle$ of WS small-world network.

    图 3  无标度网络的(a)通信序列熵$S_N$和(b)平均全局电导$\left\langle G \right\rangle$与度分布指数$\gamma$的依赖关系; (c), (d) 将$\left\langle G \right\rangle$$S_N$映射在同一坐标系下的结果

    Fig. 3.  The dependence of (a) communicability sequence entropy $S_N$ and (b) mean global conductance $\left\langle G \right\rangle$ on degree distribution exponent $\gamma$ of scale-free network; (c), (d) the results of mapping $\left\langle G \right\rangle$ with $S_N$ in the same coordinate system.

    图 4  度分布指数$\gamma$分别等于(a) 2.5和(d) 3.0时的关联无标度网络的通信序列熵$S_N$与度-度关联系数$r$的依赖关系; 相应的平均全局电导$\left\langle G \right\rangle$与关联系数$r$的依赖关系, $\gamma$分别等于(b) 2.5和(e) 3.0; (c), (f) $\left\langle G \right\rangle$$S_N$的关系曲线

    Fig. 4.  Dependence of communicability sequence entropy $S_N$ of the scale-free network on the degree-degree correlation coefficient $r$, here, the degree distribution exponent $\gamma$ is equal to (a) 2.5 and (d) 3.0, respectively; (b), (e) the dependence of the mean global conductance $\left\langle G \right\rangle$ on the correlation coefficient $r$; (c), (f) the $\left\langle G \right\rangle$ and $S_N$ relation curve.

    图 5  以BA网络为例构建的社团网络可视化图, 社团个数为1—6, 分别表示为C1—C6. 图中每一个网络中社团网络的生成方式都是按照文献[7]的方法生成. 网络规模$N = 900$, 网络边数$E \approx 2700$. 具体算法如下: 1)首先生成一个含有900个节点, 2700条边的BA网络(图C1); 2)生成两个含有450个节点、1350条边的BA网络, 然后在每个社团中随机断开少量的边, 并将这些断开的边连接到其他社团中断开的边的端点上, 形成一个含有两个社团的网络C2; 3)以此类推, 便可生成含有3, 4, 5, 6个社团的BA网络C3, C4, C5, C6

    Fig. 5.  A visualization of the community network based on the BA network. The number of communities is 1 to 6, which are denoted as C1 to C6. The generation method of the community network in each network in the figure is generated according to the method of Ref. [7]. The network size is $N = 900$, the number of network edges is $E \approx 2700$. The specific algorithm is as follows: 1) First, a BA network with 900 nodes and 2700 edges is generated, as shown in figure C1; 2) two BA networks containing 450 nodes and 1350 edges are generated, and then a small number of edges are randomly disconnected in each community, and these disconnected edges are connected to the endpoints of the interrupted edges of other communities to form a network C2 containing two communities; 3) in this way, BA network C3, C4, C5 and C6 containing 3, 4, 5 and 6 communities can be generated.ntaining 3, 4, 5 and 6 communities can be generated.

    表 1  含有社团结构的网络[BA (左), ER (右)]通信序列熵$S_N$、平均全局电导$\left\langle G \right\rangle$与社团个数的关系

    Table 1.  Relationship between communicability sequence entropy $S_N$, mean global conductance $\left\langle G \right\rangle$ and number of communities in networks [BA (left), ER (right)] containing communities.

    BA$S_N$$\left\langle G \right\rangle$ER$S_N$$\left\langle G \right\rangle$
    1(C1)0.93631.938010.97042.2106
    2 (C2)0.89251.616820.92561.8006
    3 (C3)0.87031.502630.90101.6625
    4 (C4)0.85121.440140.88321.5728
    5 (C5)0.84401.392950.87041.5203
    6 (C6)0.84091.365360.86421.4813
    下载: 导出CSV

    表 2  电力供需网络以及对应的随机化参考模型的$S_N$和平均电导$\left\langle G \right\rangle$, IEEE57 (左), IEEE118 (右)

    Table 2.  Power supply network and corresponding randomized reference model $S_N$ and mean global conductance $\left\langle G \right\rangle$, IEEE57 (left), IEEE118 (right).

    IEEE57$S_N$$\left\langle G \right\rangle$IEEE118$S_N$$\left\langle G \right\rangle$
    0阶0.87440.64040阶0.88840.7418
    1阶0.85020.63021阶0.86920.7388
    2阶0.83910.62252阶0.86890.7086
    原始0.81160.5616原始0.80290.4981
    下载: 导出CSV
  • [1]

    Dorogovtsev S N, Mendes J F F 2003 Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford: Oxford University Press) p2

    [2]

    汪小帆, 李翔, 陈关荣 2006 复杂网络理论及其应用(北京: 清华大学出版社) 第1页

    Wang X F, Li X, Chen G R 2006 Complex Network Theory and Application (Beijing: Tsinghua University Press) p1 (in Chinese)

    [3]

    Barabási A L 2016 Network Science (Cambridge: Cambridge University Press) p5

    [4]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [5]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [6]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [7]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [8]

    Cohen R, Havlin S 2010 Complex Networks: Structure, Robustness and Function (Cambridge: Cambridge University Press) p26, p181

    [9]

    Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press) p23

    [10]

    Kleinberg J M 2000 Nature 406 845Google Scholar

    [11]

    Roberson M R, Ben-Avraham D 2006 Phys. Rev. E 74 017101Google Scholar

    [12]

    Li G, Reis S D S, Moreira A A, Havlin S, Stanley H E, Andrade J S 2010 Phys. Rev. Lett. 104 018701Google Scholar

    [13]

    Li G, Reis S D S, Moreira A A, Havlin S, Stanley H E, Andrade J S 2013 Phys. Rev. E 87 042810Google Scholar

    [14]

    Pan G J, Niu R W 2016 Physica A 463 509Google Scholar

    [15]

    Niu R W, Pan G J 2016 Physica A 461 9Google Scholar

    [16]

    Lopez E, Buldyrev S V, Havlin S, Stanley H E 2005 Phys. Rev. Lett. 94 248701Google Scholar

    [17]

    Lopez E, Carmib S, Havlin S, Buldyrev S V, Stanley H E 2006 Physica D 224 69Google Scholar

    [18]

    Carmi1 S, Wu Z, Lopez E, Havlin S, Stanley H E 2007 Eur. Phys. J. B 57 165Google Scholar

    [19]

    Baba A O, Bamaarouf O, Rachadi A, Ez-Zahraouy H 2017 Int. J. Mod. Phys. C 28 1750064Google Scholar

    [20]

    Xue Y H, Wang J, Li L, He D, Hu B 2010 Phys. Rev. E 81 037101Google Scholar

    [21]

    Asztalos A, Sreenivasan S, Szymanski B K, Korniss G 2012 Eur. Phys. J. B 85 288Google Scholar

    [22]

    Oliveira C L N, Morais P A, Moreira A A, Andrade J S 2014 Phys. Rev. Lett. 112 148701Google Scholar

    [23]

    蔡萌, 杜海峰, 任义科, 费尔德曼 M 2011 物理学报 60 110513Google Scholar

    Cai M, Du H F, Ren Y K, Feldman M 2011 Acta Phys. Sin. 60 110513Google Scholar

    [24]

    Hu Y, Wang Y, Li D, Havlin S, Di Z 2011 Phys. Rev. Lett. 106 108701Google Scholar

    [25]

    李勇军, 尹超, 于会, 刘尊 2016 物理学报 65 020501Google Scholar

    Li Y J, Yin C, Yu H, Liu Z 2016 Acta Phys. Sin. 65 020501Google Scholar

    [26]

    黄丽亚, 霍宥良, 王青, 成谢锋 2019 物理学报 68 018901Google Scholar

    Huang L Y, Huo Y L, Wang Q, Cheng X F 2019 Acta Phys. Sin. 68 018901Google Scholar

    [27]

    Wang B, Tang H W, Guo C H, Xiu Z L 2006 Physica A 363 591Google Scholar

    [28]

    吴俊, 谭跃进, 郑宏钟, 朱大智 2007 系统工程理论与实践 27 101Google Scholar

    Wu J, Tan Y J, Zheng H Z, Zhu D Z 2007 System Eng. Theor. Prac. 27 101Google Scholar

    [29]

    蔡萌, 杜海峰, 费尔德曼 M 2014 物理学报 63 060504Google Scholar

    Cai M, Du H F, Feldman M W 2014 Acta Phys. Sin. 63 060504Google Scholar

    [30]

    Cai M, Cui Y, Stanley H E 2017 Sci. Rep. 7 9340Google Scholar

    [31]

    Braunstein S L, Ghosh S, Severini S 2006 Ann. Comb. 10 291Google Scholar

    [32]

    de Domenico M, Biamonte J 2016 Phys. Rev. X 6 041062

    [33]

    Chen D, Shi D D, Qin M, Xu S M, Pan G J 2018 Phys. Rev. E 98 012319

    [34]

    Estrada E, Hatano N 2008 Phys. Rev. E 77 036111Google Scholar

    [35]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [36]

    Estrada E 2012 Linear Algebra Appl. 436 4317Google Scholar

    [37]

    Wu J J, Gao Z Y, Sun H J 2006 Phys. Rev. E 74 066111Google Scholar

    [38]

    Gao J, Barzel B, Barabási A L 2016 Nature 530 307Google Scholar

    [39]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701Google Scholar

    [40]

    Johnson S, Torres J, Marro J, Munñoz M A 2010 Phys. Rev. Lett. 104 108702Google Scholar

    [41]

    Erdös P, Rényi A 1959 Publ. Math. Debrecen 6 290

    [42]

    Orsini C, Dankulov M M, Colomer-de-Simón P, Jamakovic A, Mahadevan P, Vahdat A, Bassler K E, Toroczkai Z, Boguñá M, Caldarelli G, Fortunato S, Krioukov D 2015 Nat. Commun. 6 8627Google Scholar

  • [1] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [2] 聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价. 物理学报, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [3] 王伟, 柳伟, 谢森, 葛浩然, 欧阳雨洁, 张程, 华富强, 张敏, 唐新峰. MnTe单晶薄膜的外延制备、本征点缺陷结构及电输运优化. 物理学报, 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [4] 马金龙, 张俊峰, 张冬雯, 张红斌. 基于通信序列熵的复杂网络传输容量. 物理学报, 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [5] 谭志中, 谭震. 一类任意m×n阶矩形网络的电特性. 物理学报, 2020, 69(2): 020502. doi: 10.7498/aps.69.20191303
    [6] 黄丽亚, 霍宥良, 王青, 成谢锋. 基于K-阶结构熵的网络异构性研究. 物理学报, 2019, 68(1): 018901. doi: 10.7498/aps.68.20181388
    [7] 汪丽娜, 成媛媛, 臧臣瑞. 基于seasonal-trend-loess方法的符号化时间序列网络. 物理学报, 2019, 68(23): 238901. doi: 10.7498/aps.68.20190794
    [8] 李勇军, 尹超, 于会, 刘尊. 基于最大熵模型的微博传播网络中的链路预测. 物理学报, 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [9] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究. 物理学报, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [10] 胡耀光, 王圣军, 金涛, 屈世显. 度关联无标度网络上的有倾向随机行走. 物理学报, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [11] 黄飞虎, 彭舰, 宁黎苗. 基于信息熵的社交网络观点演化模型. 物理学报, 2014, 63(16): 160501. doi: 10.7498/aps.63.160501
    [12] 蔡萌, 杜海峰, 费尔德曼. 一种基于最大流的网络结构熵. 物理学报, 2014, 63(6): 060504. doi: 10.7498/aps.63.060504
    [13] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [14] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [15] 周婷婷, 金宁德, 高忠科, 罗跃斌. 基于有限穿越可视图的时间序列网络模型. 物理学报, 2012, 61(3): 030506. doi: 10.7498/aps.61.030506
    [16] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究. 物理学报, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [17] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [18] 宋青松, 冯祖仁, 李人厚. 用于混沌时间序列预测的多簇回响状态网络. 物理学报, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [19] 张飞鹏, 路清梅, 张久兴, 张忻. 双掺杂BaxAgyCa3-x-yCo4O9氧化物的织构与电输运性能. 物理学报, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [20] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
计量
  • 文章访问数:  7329
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-21
  • 修回日期:  2019-03-24
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回