-
提出了一种基于交替起振的光电振荡器的大量程、高精度绝对距离测量方法. 此方法构建了两个光电振荡环路, 分别为测量环和参考环. 通过切换光开关实现测量/参考光电振荡器的交替起振; 通过切换微波开关实现光电振荡器高阶/低阶振荡模式的转换; 通过频率计依次记录测量/参考光电振荡器的高阶/低阶振荡频率, 然后计算测量/参考光电振荡器的腔长进一步得到绝对距离. 本方案的优点是: 由于采用了测量/参考两个光电振荡器腔长相减的方法消除系统自身的漂移, 不需要控制腔长, 结构简单. 实验中, 利用公里量级的光纤来模拟大量程的待测距离, 利用高步进精度的光延时线来模拟距离变化. 在等效6 km的空间往返待测距离上, 测量误差为3.5 μm, 相对测量精度达到5.8 × 10–10.Absolute distance measurement plays an important role in many areas, such as aerospace and scientific research. Traditional measurement methods generally cannot meet requirements for long-range and high-precision at the same time. In this paper, an absolute distance measurement method based on alternately oscillating optoelectronic oscillator is proposed. This method places the distance to be measured in the loop of optoelectronic oscillator and takes advantage of accumulative magnification effect to achieve high accuracy. The measurement and the reference optoelectronic oscillators are established and selected by an optical switch, and a microwave switch is used to choose the high-order or low-order oscillating frequency. The high-order frequency and low-order oscillating frequency of the measurement and reference optoelectronic oscillators are measured in turn by frequency counter to calculate the loop lengths of two optoelectronic oscillators. The low-order frequencies are used to measure the fundamental frequency roughly and the high-order frequencies are used to calculate loop length precisely. Although the mode hopping occurs in the measurement process, it does not affect the loop length calculation by substituting the corresponding oscillating mode number. Note that the loop length measurement moments of two optoelectronic oscillators are different due to the switching order of optical switch and microwave switch. In order to calculate the absolute distance, which is the length difference between two optoelectronic oscillators at the same moment, the measured loop lengths should be averaged.In this way, systematic error accumulation caused by slow drift of environment can be eliminated, and this method does not need to control the length of reference optoelectronic oscillator. Meanwhile, the measurement system is simple. In the experiment, 1 km, 5 km and 8 km fibers are placed in a common part of the measurement and reference optoelectronic oscillators to simulate different long-range distances in space. A high-resolution optical delay line is placed in the measurement optoelectronic oscillator to verify the performance of the measurement system. The experimental results show that the measurement error is 3.5 μm with a 3.5 μm maximum standard deviation of each measurement distance at an emulated round trip distance of 6 km. The relative measurement accuracy reaches 5.8 × 10-10. This method provides a feasible idea for solving the technical problems of long-range and high-precision absolute distance measurement.
[1] Estler W T, Edmundson K L, Peggs G N, Parker D H 2002 CIRP Ann. 51 587Google Scholar
[2] Tapley B D, Bettadpur S, Ries J C, Thompson P F, Watkins M M 2004 Science 305 503Google Scholar
[3] Kim J, Lee S W 2009 Acta Astronaut. 65 1571Google Scholar
[4] Dickey J O, Bender P L, Faller J E, Newhall X X, Ricklefs R L, Ries J G, Shelus P J, Veillet C, Whipple A L, Wiant J R, Willams J G, Yoder C F 1994 Science 265 482Google Scholar
[5] Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar
[6] Yang H J, Deibel J, Nyberg S, Riles K 2005 Appl. Opt. 44 3937Google Scholar
[7] Abouzeid A, Pollinger F, Meinershagen K, Wedde M 2009 Appl. Opt. 48 6188Google Scholar
[8] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar
Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar
[9] Ye J 2004 Opt. Lett. 29 1153Google Scholar
[10] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar
[11] Lee J, Lee K, Lee S, Kim S W, Kim Y J 2012 Meas. Sci. Technol. 23 065203Google Scholar
[12] Wang G, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S 2015 Opt. Express 23 9121Google Scholar
[13] Zhu Z B, Xu G Y, Ni K, Zhou Q, Wu G H 2018 Opt. Express 26 5747Google Scholar
[14] Zhang S H, Xu Z Y, Chen B Y, Yan L P, Xie J D 2018 Opt. Express 26 9273Google Scholar
[15] Wang J, Yu J L, Miao W, Sun B, Jia S, Wang W R, Wu Q 2014 Opt. Lett. 39 4412Google Scholar
[16] Chen B, Yu J L, Wang J, Li T Y, Wang W R, Yu Y, Xie T Y 2016 Chin. Opt. Lett. 14 110608Google Scholar
[17] Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725Google Scholar
[18] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌 2015 物理学报 64 154204Google Scholar
Jia S, Yu J L, Wang J, Wang W R, Wang Z X, Chen B 2015 Acta Phys. Sin. 64 154204Google Scholar
-
图 1 基于交替起振光电振荡器绝对距离测量的基本结构 (a)光开关处于交叉状态, 测量环振荡; (b)光开关处于平行状态, 参考环振荡
Fig. 1. Basic structure of absolute distance measurement method based on alternately oscillating OEO: (a) The measurement loop oscillates with optical switch at cross state; (b) the reference loop oscillates with optical switch at parallel state.
-
[1] Estler W T, Edmundson K L, Peggs G N, Parker D H 2002 CIRP Ann. 51 587Google Scholar
[2] Tapley B D, Bettadpur S, Ries J C, Thompson P F, Watkins M M 2004 Science 305 503Google Scholar
[3] Kim J, Lee S W 2009 Acta Astronaut. 65 1571Google Scholar
[4] Dickey J O, Bender P L, Faller J E, Newhall X X, Ricklefs R L, Ries J G, Shelus P J, Veillet C, Whipple A L, Wiant J R, Willams J G, Yoder C F 1994 Science 265 482Google Scholar
[5] Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar
[6] Yang H J, Deibel J, Nyberg S, Riles K 2005 Appl. Opt. 44 3937Google Scholar
[7] Abouzeid A, Pollinger F, Meinershagen K, Wedde M 2009 Appl. Opt. 48 6188Google Scholar
[8] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar
Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar
[9] Ye J 2004 Opt. Lett. 29 1153Google Scholar
[10] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar
[11] Lee J, Lee K, Lee S, Kim S W, Kim Y J 2012 Meas. Sci. Technol. 23 065203Google Scholar
[12] Wang G, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S 2015 Opt. Express 23 9121Google Scholar
[13] Zhu Z B, Xu G Y, Ni K, Zhou Q, Wu G H 2018 Opt. Express 26 5747Google Scholar
[14] Zhang S H, Xu Z Y, Chen B Y, Yan L P, Xie J D 2018 Opt. Express 26 9273Google Scholar
[15] Wang J, Yu J L, Miao W, Sun B, Jia S, Wang W R, Wu Q 2014 Opt. Lett. 39 4412Google Scholar
[16] Chen B, Yu J L, Wang J, Li T Y, Wang W R, Yu Y, Xie T Y 2016 Chin. Opt. Lett. 14 110608Google Scholar
[17] Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725Google Scholar
[18] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌 2015 物理学报 64 154204Google Scholar
Jia S, Yu J L, Wang J, Wang W R, Wang Z X, Chen B 2015 Acta Phys. Sin. 64 154204Google Scholar
计量
- 文章访问数: 7696
- PDF下载量: 99
- 被引次数: 0