搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交替起振光电振荡器的大量程高精度绝对距离测量技术

谢田元 王菊 王子雄 马闯 于洋 李天宇 方杰 于晋龙

引用本文:
Citation:

基于交替起振光电振荡器的大量程高精度绝对距离测量技术

谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙

Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator

Xie Tian-Yuan, Wang Ju, Wang Zi-Xiong, Ma Chuang, Yu Yang, Li Tian-Yu, Fang Jie, Yu Jin-Long
PDF
HTML
导出引用
  • 提出了一种基于交替起振的光电振荡器的大量程、高精度绝对距离测量方法. 此方法构建了两个光电振荡环路, 分别为测量环和参考环. 通过切换光开关实现测量/参考光电振荡器的交替起振; 通过切换微波开关实现光电振荡器高阶/低阶振荡模式的转换; 通过频率计依次记录测量/参考光电振荡器的高阶/低阶振荡频率, 然后计算测量/参考光电振荡器的腔长进一步得到绝对距离. 本方案的优点是: 由于采用了测量/参考两个光电振荡器腔长相减的方法消除系统自身的漂移, 不需要控制腔长, 结构简单. 实验中, 利用公里量级的光纤来模拟大量程的待测距离, 利用高步进精度的光延时线来模拟距离变化. 在等效6 km的空间往返待测距离上, 测量误差为3.5 μm, 相对测量精度达到5.8 × 10–10.
    Absolute distance measurement plays an important role in many areas, such as aerospace and scientific research. Traditional measurement methods generally cannot meet requirements for long-range and high-precision at the same time. In this paper, an absolute distance measurement method based on alternately oscillating optoelectronic oscillator is proposed. This method places the distance to be measured in the loop of optoelectronic oscillator and takes advantage of accumulative magnification effect to achieve high accuracy. The measurement and the reference optoelectronic oscillators are established and selected by an optical switch, and a microwave switch is used to choose the high-order or low-order oscillating frequency. The high-order frequency and low-order oscillating frequency of the measurement and reference optoelectronic oscillators are measured in turn by frequency counter to calculate the loop lengths of two optoelectronic oscillators. The low-order frequencies are used to measure the fundamental frequency roughly and the high-order frequencies are used to calculate loop length precisely. Although the mode hopping occurs in the measurement process, it does not affect the loop length calculation by substituting the corresponding oscillating mode number. Note that the loop length measurement moments of two optoelectronic oscillators are different due to the switching order of optical switch and microwave switch. In order to calculate the absolute distance, which is the length difference between two optoelectronic oscillators at the same moment, the measured loop lengths should be averaged.In this way, systematic error accumulation caused by slow drift of environment can be eliminated, and this method does not need to control the length of reference optoelectronic oscillator. Meanwhile, the measurement system is simple. In the experiment, 1 km, 5 km and 8 km fibers are placed in a common part of the measurement and reference optoelectronic oscillators to simulate different long-range distances in space. A high-resolution optical delay line is placed in the measurement optoelectronic oscillator to verify the performance of the measurement system. The experimental results show that the measurement error is 3.5 μm with a 3.5 μm maximum standard deviation of each measurement distance at an emulated round trip distance of 6 km. The relative measurement accuracy reaches 5.8 × 10-10. This method provides a feasible idea for solving the technical problems of long-range and high-precision absolute distance measurement.
      通信作者: 王菊, wangju@tju.edu.cn
    • 基金项目: 国家自然科学基金科学仪器基础研究专项(批准号: 61427817)和国家自然科学基金(批准号: 61775162, 61601321)资助的课题.
      Corresponding author: Wang Ju, wangju@tju.edu.cn
    • Funds: Project supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61427817), and the National Natural Science Foundation of China (Grant Nos. 61775162, 61601321).
    [1]

    Estler W T, Edmundson K L, Peggs G N, Parker D H 2002 CIRP Ann. 51 587Google Scholar

    [2]

    Tapley B D, Bettadpur S, Ries J C, Thompson P F, Watkins M M 2004 Science 305 503Google Scholar

    [3]

    Kim J, Lee S W 2009 Acta Astronaut. 65 1571Google Scholar

    [4]

    Dickey J O, Bender P L, Faller J E, Newhall X X, Ricklefs R L, Ries J G, Shelus P J, Veillet C, Whipple A L, Wiant J R, Willams J G, Yoder C F 1994 Science 265 482Google Scholar

    [5]

    Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar

    [6]

    Yang H J, Deibel J, Nyberg S, Riles K 2005 Appl. Opt. 44 3937Google Scholar

    [7]

    Abouzeid A, Pollinger F, Meinershagen K, Wedde M 2009 Appl. Opt. 48 6188Google Scholar

    [8]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [9]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [10]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar

    [11]

    Lee J, Lee K, Lee S, Kim S W, Kim Y J 2012 Meas. Sci. Technol. 23 065203Google Scholar

    [12]

    Wang G, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S 2015 Opt. Express 23 9121Google Scholar

    [13]

    Zhu Z B, Xu G Y, Ni K, Zhou Q, Wu G H 2018 Opt. Express 26 5747Google Scholar

    [14]

    Zhang S H, Xu Z Y, Chen B Y, Yan L P, Xie J D 2018 Opt. Express 26 9273Google Scholar

    [15]

    Wang J, Yu J L, Miao W, Sun B, Jia S, Wang W R, Wu Q 2014 Opt. Lett. 39 4412Google Scholar

    [16]

    Chen B, Yu J L, Wang J, Li T Y, Wang W R, Yu Y, Xie T Y 2016 Chin. Opt. Lett. 14 110608Google Scholar

    [17]

    Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725Google Scholar

    [18]

    贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌 2015 物理学报 64 154204Google Scholar

    Jia S, Yu J L, Wang J, Wang W R, Wang Z X, Chen B 2015 Acta Phys. Sin. 64 154204Google Scholar

  • 图 1  基于交替起振光电振荡器绝对距离测量的基本结构 (a)光开关处于交叉状态, 测量环振荡; (b)光开关处于平行状态, 参考环振荡

    Fig. 1.  Basic structure of absolute distance measurement method based on alternately oscillating OEO: (a) The measurement loop oscillates with optical switch at cross state; (b) the reference loop oscillates with optical switch at parallel state.

    图 2  距离测量过程 (a)光开关、微波开关切换时刻及相应的频率测量; (b) OEO1和OEO2的腔长测量及绝对距离测量

    Fig. 2.  Distance measurement process: (a) The switching moments of optical switch and microwave switch and corresponding frequency measurement process; (b) loop length measurement of OEO1, OEO2 and the absolute distance measurement.

    图 3  开关切换及频率计计数时序图

    Fig. 3.  The switching time and frequency counting timing diagram.

    图 4  测量/参考环振荡信号的频谱图 (a)高阶模式起振; (b)低阶模式起振

    Fig. 4.  RF spectrum of oscillating frequencies of measurement/reference loop: (a) With OEO oscillating at high-order mode; (b) with OEO oscillating at low-order mode.

    图 5  长光纤为5 km光延时线在0 mm位置时的测量结果 (a) OEO1和OEO2起振频率测量值; (b) OEO1和OEO2的腔长及待测距离测量结果

    Fig. 5.  Measurement results at 0 mm position of optical delay line with 5 km fiber: (a) Oscillating frequencies of OEO1 and OEO2; (b) loop lengths of OEO1 and OEO2, and distance measurement results.

    图 6  长光纤为5 km时测量距离与光延时线位移距离的关系

    Fig. 6.  The relationship between measured distance and position variation of optical delay line with 5 km fiber.

    图 7  测量距离与光延时线位移距离的关系 (a) 1 km长光纤; (b) 8 km长光纤

    Fig. 7.  The relationship between measured distance and position variation of optical delay line: (a) With 1 km fiber; (b) with 8 km fiber.

  • [1]

    Estler W T, Edmundson K L, Peggs G N, Parker D H 2002 CIRP Ann. 51 587Google Scholar

    [2]

    Tapley B D, Bettadpur S, Ries J C, Thompson P F, Watkins M M 2004 Science 305 503Google Scholar

    [3]

    Kim J, Lee S W 2009 Acta Astronaut. 65 1571Google Scholar

    [4]

    Dickey J O, Bender P L, Faller J E, Newhall X X, Ricklefs R L, Ries J G, Shelus P J, Veillet C, Whipple A L, Wiant J R, Willams J G, Yoder C F 1994 Science 265 482Google Scholar

    [5]

    Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar

    [6]

    Yang H J, Deibel J, Nyberg S, Riles K 2005 Appl. Opt. 44 3937Google Scholar

    [7]

    Abouzeid A, Pollinger F, Meinershagen K, Wedde M 2009 Appl. Opt. 48 6188Google Scholar

    [8]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [9]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [10]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar

    [11]

    Lee J, Lee K, Lee S, Kim S W, Kim Y J 2012 Meas. Sci. Technol. 23 065203Google Scholar

    [12]

    Wang G, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S 2015 Opt. Express 23 9121Google Scholar

    [13]

    Zhu Z B, Xu G Y, Ni K, Zhou Q, Wu G H 2018 Opt. Express 26 5747Google Scholar

    [14]

    Zhang S H, Xu Z Y, Chen B Y, Yan L P, Xie J D 2018 Opt. Express 26 9273Google Scholar

    [15]

    Wang J, Yu J L, Miao W, Sun B, Jia S, Wang W R, Wu Q 2014 Opt. Lett. 39 4412Google Scholar

    [16]

    Chen B, Yu J L, Wang J, Li T Y, Wang W R, Yu Y, Xie T Y 2016 Chin. Opt. Lett. 14 110608Google Scholar

    [17]

    Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725Google Scholar

    [18]

    贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌 2015 物理学报 64 154204Google Scholar

    Jia S, Yu J L, Wang J, Wang W R, Wang Z X, Chen B 2015 Acta Phys. Sin. 64 154204Google Scholar

  • [1] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统. 物理学报, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [2] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [3] 徐昕阳, 赵海涵, 钱治文, 刘超, 翟京生, 吴翰钟. 动态啁啾脉冲干涉的快速绝对距离测量. 物理学报, 2021, 70(22): 220601. doi: 10.7498/aps.70.20202149
    [4] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [5] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [6] 麻艳娜, 黄添添, 王文睿, 宋开臣. 基于双环混频光电振荡器的可调谐微波频率梳产生. 物理学报, 2018, 67(23): 238401. doi: 10.7498/aps.67.20181582
    [7] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系. 物理学报, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [8] 黄港膑, 王菊, 王文睿, 贾石, 于晋龙. 一种基于串联谐振腔的高性能光电振荡器. 物理学报, 2016, 65(4): 044204. doi: 10.7498/aps.65.044204
    [9] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [10] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [11] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [12] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [13] 贾石, 于晋龙, 王菊, 王子雄, 陈斌. 重复频率可调谐的超低抖动光窄脉冲源的研究. 物理学报, 2015, 64(18): 184201. doi: 10.7498/aps.64.184201
    [14] 吴穹, 于晋龙, 王菊, 王文睿, 贾石, 黄港膑, 黑克非, 李丽娟. 一种基于微波谐振测量Sagnac效应的新方案. 物理学报, 2015, 64(4): 044205. doi: 10.7498/aps.64.044205
    [15] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌. 基于波长双环路结构的新型光电振荡器的研究. 物理学报, 2015, 64(15): 154204. doi: 10.7498/aps.64.154204
    [16] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [17] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [18] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现. 物理学报, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [19] 李凯, 王安帮, 赵彤, 王云才. 光电振荡器产生宽带混沌光的时延特征分析. 物理学报, 2013, 62(14): 144207. doi: 10.7498/aps.62.144207
    [20] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
计量
  • 文章访问数:  7531
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-04-30
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回