搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比

袁国才 陈曦 黄雨阳 毛俊西 禹劲秋 雷晓波 张勤勇

引用本文:
Citation:

Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比

袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇

Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li

Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong
PDF
HTML
导出引用
  • 采用两步固相法合成了物相均匀的Mg2(1–x)Ag2xSi0.3Sn0.7 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05)和Mg2(1–y)Li2ySi0.3Sn0.7 (y = 0, 0.02, 0.04, 0.06, 0.08)热电材料, 测试了室温物理性能和室温至773 K的热电性能, 研究了不同掺杂剂的固溶度、微观结构、载流子浓度、电性能和热输运. X射线衍射图谱和扫描电子显微镜图像显示掺杂Ag和Li的固溶度分别为x = 0.03和y = 0.06. 根据单抛物线模型, p型的Mg2(1–x)Ag2xSi0.3Sn0.7和Mg2(1–y)Li2ySi0.3Sn0.7的有效质量为1.2m0. 对比结果表明: 掺杂Ag或Li的最大载流子浓度分别达到4.64 × 1019 cm–3和15.1 × 1019 cm–3; 掺杂Li元素的样品有较高的固溶度、较高的载流子浓度和较高的功率因子PF约为1.62 × 10–3 W·m–1·K–2; 掺杂Li元素样品中较高的载流子浓度能够有效抑制双极效应, 显著降低双极热导率; Mg1.92Li0.08Si0.3Sn0.7的最大ZT值0.54, 比Mg1.9Ag0.1Si0.3Sn0.7的最大ZT值0.34提高了大约58%. 根据Callaway理论, 由于质量场波动和应变场波动增强声子散射, 掺杂Ag和Li元素样品的晶格热导率比未掺杂样品明显降低.
    In recent decades, Mg2(Si, Sn) solid solutions have long been considered as one of the most important classes of eco-friendly thermoelectric materials. The thermoelectric performance of Mg2(Si, Sn) solid solutions with outstanding characteristics of low-price, non-toxicity, earth-abundant and low-density has been widely studied. The n-type Mg2(Si, Sn) solid solutions have achieved the dimensionless thermoelectric figure of merit ZT ~1.4 through Bi/Sb doping and convergence of conduction bands. However, the thermoelectric performances for p-type Mg2(Si, Sn) solid solutions are mainly improved by optimizing the carrier concentration. In this work, the thermoelectric properties for p-type Mg2Si0.3Sn0.7 are investigated and compared with those for different p-type dopant Ag or Li. The homogeneous Mg2Si0.3Sn0.7 with Ag or Li doping is synthesized by two-step solid-state reaction method at temperatures of 873 K and 973 K for 24 h, respectively. The transport parameters and the thermoelectric properties are measured at temperatures ranging from room temperature to 773 K for Mg2(1–x)Ag2xSi0.3Sn0.7 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) and Mg2(1–y)Li2ySi0.3Sn0.7 (y = 0, 0.02, 0.04, 0.06, 0.08) samples. The influences of different dopants on solid solubility, microstructure, carrier concentration, electrical properties and thermal transport are also investigated. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images show that the solid solubility for Ag and for Li are x = 0.03 and y = 0.06, respectively. Based on the assumption of single parabolic band model, the value of effective mass ~1.2m0 of p-type Mg2(1–x)Ag2xSi0.3Sn0.7 and Mg2(1–y)Li2ySi0.3Sn0.7 are similar to that reported in the literature. The comparative results demonstrate that the maximum carrier concentration for Ag doping and for Li doping are 4.64×1019 cm–3 for x = 0.01 and 15.1×1019 cm–3 for y = 0.08 at room temperature, respectively; the Li element has higher solid solubility in Mg2(Si, Sn), which leads to higher carrier concentration and power factor PF ~1.62×10–3 ${\rm W}\cdot{\rm m^{–1}}\cdot{\rm K^{–2}}$ in Li doped samples; the higher carrier concentration of Li doped samples effectively suppresses the bipolar effect; the maximum of ZT ~0.54 for Mg1.92Li0.08Si0.3Sn0.7 is 58% higher than that of Mg1.9Ag0.1Si0.3Sn0.7 samples. The lattice thermal conductivity of Li or Ag doped sample decreases obviously due to the stronger mass and strain field fluctuations in phonon transport.
      通信作者: 张勤勇, zhangqy@mail.xhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51572226)、四川省科技支撑计划(批准号: 2015GZ0060)和国家创新创业训练项目(批准号: 201710623)资助的课题.
      Corresponding author: Zhang Qin-Yong, zhangqy@mail.xhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572226), the Science and Technology Foundation of Sichuan Province, China (Grant No. 2015GZ0060), and the Chinese Innovation and Entrepreneurship Training Project (Grant No. 201710623).
    [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder G J, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    朱航天, 任武洋, 张勤勇, 任志锋 2018 西华大学学报(自然科学版) 37 15Google Scholar

    Zhu H T, Ren W Y, Zhang Q Y, Ren Z F 2018 J. Xihua Univ. (Natural Science Edition) 37 15Google Scholar

    [6]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [7]

    Mao J, Wang Y, Ge B, Jie Q, Liu Z, Saparamadu U, Liu W, Ren Z 2016 Phys. Chem. Chem. Phys. 18 20726Google Scholar

    [8]

    Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C, He J 2017 Phys. Rev. Lett. 119 116401Google Scholar

    [9]

    Pei Y, Lalonde A D, Wang H, Snyder G J 2012 Energy Environ. Sci. 5 7963Google Scholar

    [10]

    张勤勇, 袁国才, 王俊臣, 毛俊西, 雷晓波 2018 西华大学学报(自然科学版) 37 1Google Scholar

    Zhang Q Y, Yuan G C, Wang J C, Mao J X, Lei X B 2018 J. Xihua Univ. (Natural Science Edition) 37 1Google Scholar

    [11]

    Paul B, Ajay Kumar V, Banerji P 2010 J. Appl. Phys. 108 064322Google Scholar

    [12]

    Xie W J, Yan Y G, Zhu S, Zhou M, Populoh S, Gałązka K, Poon S J, Weidenkaff A, He J, Tang X F, Tritt T M 2013 Acta Mater. 61 2087Google Scholar

    [13]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [14]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246Google Scholar

    [15]

    Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W, Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033Google Scholar

    [16]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [17]

    王浚臣, 袁国才, 禹劲秋, 莫小波, 金应荣, 黄丽宏 2018 西华大学学报(自然科学版) 37 68Google Scholar

    Wang J C, Yuan G C, Yu J Q, Mo X B, Jin Y R, Huang L H 2018 Journal of Xihua University (Natural Science Edition) 37 68Google Scholar

    [18]

    de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z F 2017 Mater. Today Energy 4 105Google Scholar

    [19]

    Bashir M B A, Mohd Said S, Sabri M F M, Shnawah D A, Elsheikh M H 2014 Renewable and Sustainable Energy Reviews 37 569Google Scholar

    [20]

    Santos R, Aminorroaya Yamini S, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Liu W, Yin K, Zhang Q, Uher C, Tang X 2017 Nat. Sci. Rev. 4 611Google Scholar

    [22]

    Pulikkotil J J, Singh D J, Auluck S, Saravanan M, Misra D K, Dhar A, Budhani R C 2012 Phys. Rev. B 86 155204Google Scholar

    [23]

    Sun J, Singh D J 2016 Phys. Rev. Appl. 5 024006Google Scholar

    [24]

    Tani J I, Kido H 2008 Intermetallics 16 418Google Scholar

    [25]

    Tani J I, Kido H 2012 Physica B 407 3493Google Scholar

    [26]

    Imai Y, Mori Y, Nakamura S, Takarabe K I 2013 J. Alloys Compd. 549 175Google Scholar

    [27]

    Tani J I, Kido H 2008 J. Alloys Compd. 466 335Google Scholar

    [28]

    Zhang Q, He J, Zhao X B, Zhang S N, Zhu T J, Yin H, Tritt T M 2008 J. Phys. D: Appl. Phys. 41 185103Google Scholar

    [29]

    Luo W J, Yang M J, Fei C, Shen Q, Jiang H G, Zhang L M 2010 Mater. Trans. 51 288Google Scholar

    [30]

    Liu W, Tang X, Li H, Yin K, Sharp J, Zhou X, Uher C 2012 J. Mater. Chem. 22 13653Google Scholar

    [31]

    Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H 2011 J. Alloys Compd. 509 6503Google Scholar

    [32]

    Tada S, Isoda Y, Udono H, Fujiu H, Kumagai S, Shinohara Y 2014 J. Electron. Mater. 43 1580

    [33]

    Zhang Q, Cheng L, Liu W, Zheng Y, Su X, Chi H, Liu H, Yan Y, Tang X, Uher C 2014 Phys. Chem. Chem. Phys. 16 23576Google Scholar

    [34]

    Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X 2017 Appl. Therm. Eng. 111 1396Google Scholar

    [35]

    Yin K, Zhang Q, Zheng Y, Su X, Tang X, Uher C 2015 J. Mater. Chem. C 3 10381Google Scholar

    [36]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X, Zhang Q, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893Google Scholar

    [37]

    de Boor J, Saparamadu U, Mao J, Dahal K, Müller E, Ren Z 2016 Acta Mater. 120 273Google Scholar

    [38]

    Saparamadu U, de Boor J, Mao J, Song S, Tian F, Liu W, Zhang Q, Ren Z 2017 Acta Mater. 141 154Google Scholar

    [39]

    Gao P, Davis J D, Poltavets V V, Hogan T P 2016 J. Mater. Chem. C 4 929Google Scholar

    [40]

    Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G, Zhou X 2016 Scripta Mater. 115 52Google Scholar

    [41]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [42]

    Yang J, Meisner G P, Chen L 2004 Appl. Phys. Lett. 85 1140Google Scholar

    [43]

    覃玉婷, 仇鹏飞, 史迅, 陈立东 2017 无机材料学报 32 1171

    Qin Y T, Qiu P F, Shi X, Chen L D 2017 J. Inorg. Mater. 32 1171

    [44]

    Slack G A 1957 Phys. Rev. 105 832Google Scholar

    [45]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

  • 图 1  Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的XRD图谱(a), (c)与晶格常数(b), (d)

    Fig. 1.  XRD patterns (a), (c) and lattice constant (b), (d) of Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 2  (a), (b), (c)分别为Mg2Si0.3Sn0.7, Mg1.9Ag0.1Si0.3Sn0.7,Mg1.92Li0.08Si0.3Sn0.7的SEM图像; (d) Mg1.92Li0.08Si0.3Sn0.7的背散射图像

    Fig. 2.  (a), (b) and (c) are SEM images of Mg2Si0.3Sn0.7, Mg1.9Ag0.1Si0.3Sn0.7, and Mg1.92Li0.08Si0.3Sn0.7; (d) the back scattered electron image of Mg1.92Li0.08Si0.3Sn0.7

    图 3  Seebeck系数S与载流子浓度p之间的Pisarenko关系

    Fig. 3.  The Pisarenko plot between Seebeck coefficient S and carrier concentration p

    图 4  (a)—(f) Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的电导率、Seebeck系数和功率因子与温度的关系

    Fig. 4.  The temperature dependence of (a), (d) electrical conductivity, (b), (e) Seebeck coefficient and (c), (f) power factor for Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 5  (a)—(f) Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的热导率, 晶格热导率和ZT值与温度的关系图

    Fig. 5.  The temperature dependence of (a), (d) thermal conductivity, (b), (e) lattice thermal conductivity and (c), (f) ZT for Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 6  Mg2Si0.3Sn0.7的掺杂Ag和Li浓度与质量场波动散射因子ΓM和应变场波动散射因子ΓS的关系

    Fig. 6.  The relation of (a) the mass fluctuation scattering parameter ΓM, (b) strain field fluctuation scattering parameter ΓS and doping Ag, Li content of Mg2Si0.3Sn0.7

    表 1  Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)在300 K的物理参数

    Table 1.  Physical parameters of Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08) at 300 K

    Compositionσ/104 S·m–1RH/cm3·C–1p/1019 cm–3μ/cm2·V–1·s–1S/μV·K–1m*(m0)
    x = 00.15–3.22–0.1948.3–458.01.6
    x = 0.013.480.1354.6446.8154.71.2
    x = 0.023.330.1733.6057.7166.41.1
    x = 0.033.730.1863.3569.5163.81.0
    x = 0.043.110.1554.0348.2160.61.1
    x = 0.053.620.1534.0953.7154.71.1
    y = 0.0211.200.05611.1063.190.71.0
    y = 0.049.650.04414.0042.891.31.2
    y = 0.0613.140.04214.7055.882.21.1
    y = 0.089.740.04115.1040.283.91.2
    下载: 导出CSV
  • [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder G J, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    朱航天, 任武洋, 张勤勇, 任志锋 2018 西华大学学报(自然科学版) 37 15Google Scholar

    Zhu H T, Ren W Y, Zhang Q Y, Ren Z F 2018 J. Xihua Univ. (Natural Science Edition) 37 15Google Scholar

    [6]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [7]

    Mao J, Wang Y, Ge B, Jie Q, Liu Z, Saparamadu U, Liu W, Ren Z 2016 Phys. Chem. Chem. Phys. 18 20726Google Scholar

    [8]

    Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C, He J 2017 Phys. Rev. Lett. 119 116401Google Scholar

    [9]

    Pei Y, Lalonde A D, Wang H, Snyder G J 2012 Energy Environ. Sci. 5 7963Google Scholar

    [10]

    张勤勇, 袁国才, 王俊臣, 毛俊西, 雷晓波 2018 西华大学学报(自然科学版) 37 1Google Scholar

    Zhang Q Y, Yuan G C, Wang J C, Mao J X, Lei X B 2018 J. Xihua Univ. (Natural Science Edition) 37 1Google Scholar

    [11]

    Paul B, Ajay Kumar V, Banerji P 2010 J. Appl. Phys. 108 064322Google Scholar

    [12]

    Xie W J, Yan Y G, Zhu S, Zhou M, Populoh S, Gałązka K, Poon S J, Weidenkaff A, He J, Tang X F, Tritt T M 2013 Acta Mater. 61 2087Google Scholar

    [13]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [14]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246Google Scholar

    [15]

    Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W, Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033Google Scholar

    [16]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [17]

    王浚臣, 袁国才, 禹劲秋, 莫小波, 金应荣, 黄丽宏 2018 西华大学学报(自然科学版) 37 68Google Scholar

    Wang J C, Yuan G C, Yu J Q, Mo X B, Jin Y R, Huang L H 2018 Journal of Xihua University (Natural Science Edition) 37 68Google Scholar

    [18]

    de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z F 2017 Mater. Today Energy 4 105Google Scholar

    [19]

    Bashir M B A, Mohd Said S, Sabri M F M, Shnawah D A, Elsheikh M H 2014 Renewable and Sustainable Energy Reviews 37 569Google Scholar

    [20]

    Santos R, Aminorroaya Yamini S, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Liu W, Yin K, Zhang Q, Uher C, Tang X 2017 Nat. Sci. Rev. 4 611Google Scholar

    [22]

    Pulikkotil J J, Singh D J, Auluck S, Saravanan M, Misra D K, Dhar A, Budhani R C 2012 Phys. Rev. B 86 155204Google Scholar

    [23]

    Sun J, Singh D J 2016 Phys. Rev. Appl. 5 024006Google Scholar

    [24]

    Tani J I, Kido H 2008 Intermetallics 16 418Google Scholar

    [25]

    Tani J I, Kido H 2012 Physica B 407 3493Google Scholar

    [26]

    Imai Y, Mori Y, Nakamura S, Takarabe K I 2013 J. Alloys Compd. 549 175Google Scholar

    [27]

    Tani J I, Kido H 2008 J. Alloys Compd. 466 335Google Scholar

    [28]

    Zhang Q, He J, Zhao X B, Zhang S N, Zhu T J, Yin H, Tritt T M 2008 J. Phys. D: Appl. Phys. 41 185103Google Scholar

    [29]

    Luo W J, Yang M J, Fei C, Shen Q, Jiang H G, Zhang L M 2010 Mater. Trans. 51 288Google Scholar

    [30]

    Liu W, Tang X, Li H, Yin K, Sharp J, Zhou X, Uher C 2012 J. Mater. Chem. 22 13653Google Scholar

    [31]

    Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H 2011 J. Alloys Compd. 509 6503Google Scholar

    [32]

    Tada S, Isoda Y, Udono H, Fujiu H, Kumagai S, Shinohara Y 2014 J. Electron. Mater. 43 1580

    [33]

    Zhang Q, Cheng L, Liu W, Zheng Y, Su X, Chi H, Liu H, Yan Y, Tang X, Uher C 2014 Phys. Chem. Chem. Phys. 16 23576Google Scholar

    [34]

    Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X 2017 Appl. Therm. Eng. 111 1396Google Scholar

    [35]

    Yin K, Zhang Q, Zheng Y, Su X, Tang X, Uher C 2015 J. Mater. Chem. C 3 10381Google Scholar

    [36]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X, Zhang Q, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893Google Scholar

    [37]

    de Boor J, Saparamadu U, Mao J, Dahal K, Müller E, Ren Z 2016 Acta Mater. 120 273Google Scholar

    [38]

    Saparamadu U, de Boor J, Mao J, Song S, Tian F, Liu W, Zhang Q, Ren Z 2017 Acta Mater. 141 154Google Scholar

    [39]

    Gao P, Davis J D, Poltavets V V, Hogan T P 2016 J. Mater. Chem. C 4 929Google Scholar

    [40]

    Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G, Zhou X 2016 Scripta Mater. 115 52Google Scholar

    [41]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [42]

    Yang J, Meisner G P, Chen L 2004 Appl. Phys. Lett. 85 1140Google Scholar

    [43]

    覃玉婷, 仇鹏飞, 史迅, 陈立东 2017 无机材料学报 32 1171

    Qin Y T, Qiu P F, Shi X, Chen L D 2017 J. Inorg. Mater. 32 1171

    [44]

    Slack G A 1957 Phys. Rev. 105 832Google Scholar

    [45]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

  • [1] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] 刘榕涛, 王晨阳, 黄嘉勉, 罗鹏飞, 刘欣, 叶松, 董子睿, 张继业, 骆军. Sc掺杂Ti1–xNiSb半哈斯勒合金的制备与热电性能. 物理学报, 2023, 72(8): 087201. doi: 10.7498/aps.72.20230035
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [5] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [6] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [9] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [10] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [11] 孟代仪, 申兰先, 晒旭霞, 董国俊, 邓书康. Ge掺杂n型Sn基Ⅷ型单晶笼合物的制备及热电传输特性. 物理学报, 2013, 62(24): 247401. doi: 10.7498/aps.62.247401
    [12] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律. 物理学报, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [13] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [14] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [15] 王作成, 李涵, 苏贤礼, 唐新峰. In0.3Co4Sb12-xSex 方钴矿热电材料的制备和热电性能. 物理学报, 2011, 60(2): 027202. doi: 10.7498/aps.60.027202
    [16] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [17] 张轶群, 施 毅, 濮 林, 张 荣, 郑有炓. 纳米线阵列横向输运的热电特性研究. 物理学报, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [18] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [19] 罗派峰, 唐新峰, 熊 聪, 张清杰. 多壁碳纳米管对p型Ba0.3FeCo3Sb12化合物热电性能的影响. 物理学报, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [20] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
计量
  • 文章访问数:  8922
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-04-04
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回