搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹雷达散射截面的仿真与时域光谱测量

张旭涛 阙肖峰 蔡禾 孙金海 张景 李粮生 刘永强

引用本文:
Citation:

太赫兹雷达散射截面的仿真与时域光谱测量

张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强

Simulations and time-domain spectroscopy measurements for terahertz radar-cross section

Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang
PDF
HTML
导出引用
  • 太赫兹时域光谱技术在安检、无损检测、生物医学等领域有广泛的应用, 而其在雷达目标特性领域的应用一直存在诸多争议. 针对目前太赫兹时域光谱雷达散射截面定量测量的难题, 本文基于太赫兹时域光谱技术搭建了太赫兹时域光谱目标散射测量系统, 利用该系统测量了金属球、金属圆盘、金属圆柱等典型定标体在0.2—1.6 THz频段内的极窄时域脉冲回波, 数据处理后得到了各定标体的雷达散射截面, 与理论数据对比验证了系统测量结果的精度. 在此基础上, 测量了太赫兹频段电大尺寸复杂目标的雷达散射截面, 并将表面积分方程法与多层快速多极子算法相结合对目标的雷达散射截面进行了数值计算, 测量值与理论值达到了较好的一致性. 研究结果为太赫兹时域光谱技术在太赫兹目标特性领域的应用奠定了基础.
    Terahertz time-domain spectroscopy technology has a wide range of applications in security inspection, nondestructive testing, biomedical, etc. But its application to target characteristics has been under debates, because there exist so many differences between terahertz continuous wave and ultra short pulse wave (single pulse width about 1 ps). For investigating the problem of quantitatively measuring the terahertz radar cross section, in this paper, a terahertz time domain spectroscopy scattering measurement system is built based on the technology of terahertz time domain spectroscopy. After system optimization and error minimization of location and system, time domain echoes of targets, such as sphere, disk, cylinder and complex targets, are measured. After the process of fast Fourier transformation and calibration, radar cross sections of the above-mentioned targets in a frequency range of 0.2–1.6 THz are calculated. Furthermore, the surface integral equation method and multilevel fast multipole algorithm are used to simulate the radar-cross section (RCS) results. The measured radar cross section results are compared with the simulations, and their error is less than 3 dB. The error arises mainly from the location and uneven distribution of terahertz wave on quiet zone. Generally, it is acceptable though there is still much work to do. The accuracy of RCS measurement of terahertz time domain is varified. All those are progressing in terahertz time domain spectroscopy technology used in target characteristics. Moreover, the methods of improving dynamic range in high frequency and enlarging quiet zone are the focus of follow-up studies.
      通信作者: 张旭涛, mi_zhangxt@163.com
      Corresponding author: Zhang Xu-Tao, mi_zhangxt@163.com
    [1]

    李允植 著(崔万照 译) 2012 太赫兹科学与技术原理(北京: 国防工业出版社)第192页

    Lee Y S (translated by Cui W Z) 2012 Principles of Terahertz Science and Technology (Beijing: National Defence Industry Press) p192 (in Chinese)

    [2]

    许景周, 张希成 2007 太赫兹科学技术和应用(北京: 北京大学出版社)第206页

    Xu J Z, Zhang X C 2007 Applications of Terahertz Science and Technology (Beijing: Peking University Press) p206 (in Chinese)

    [3]

    DeMartinis G B, Coulombe M J, Horgan T M, Giles R H, Nixon W E 2010 Proc. AMTA 3

    [4]

    Goyette T M, Dickinson J C, Waldman J, Nixon W E 2000 SPIE 4053 615

    [5]

    McGowan R W, Cheville R A, Grischkowsky D R 2000 IEEE Trans. Microwave Theory & Techn. 48 417

    [6]

    Iwaszczuk K, Heiselberg H, Jepsen P U 2010 Opt. Express 18 26399Google Scholar

    [7]

    Gente R, Jansen C, Geise R, Peters O, Gente M, Krumbholz N, Möller C, Busch S, Koch M 2012 IEEE Trans. Terahertz Sci. Technol. 2 424Google Scholar

    [8]

    王瑞君 2015 博士学位论文 (长沙: 国防科技大学)

    Wang R J 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [9]

    Cheng B B, Jiang G, Wang C, Yang C 2013 IEEE Trans. Terahertz Sci. Technol. 3 594Google Scholar

    [10]

    成彬彬, 江舸, 陈鹏, 杨陈, 陆彬, 蔡英武, 邓贤进, 陈樟, 张健, 周传明 2013 太赫兹科学与电子信息学报 1 7

    Cheng B B, Jiang K, Chen P, Yang C, Lu B, Cai Y W, Deng X J, Chen Z, Zhang J, Zhou C M 2013 J. Terahertz Sci. Electron. Inform. Technol. 1 7

    [11]

    张旭涛, 孙金海, 蔡禾, 张少华 2016 红外与激光工程 45 11

    Zhang X T, Sun J H, Cai H, Zhang S C 2016 Infrared and Laser Engineering 45 11

    [12]

    黄培康, 殷红成, 许小剑 2005 雷达目标特性(北京: 电子工业出版社) 第21页, 第48—61页

    Huang P K, Yin H C, Xu X J 2005 Radar Target Characteristics (Beijing: Publishing House of Electronics Industry)p21, pp48–61 (in Chinese)

    [13]

    Yla-Oijala P, Taskinen M, Sarvas J 2005 Prog. Electromagn. Res. 52 81Google Scholar

    [14]

    Song J M, Lu C C, Chew W C 1997 IEEE Trans. Aantennas Propagat. 45 1488Google Scholar

    [15]

    巩露露 2010 博士学位论文(南京: 南京理工大学)

    Gong L L 2010 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese)

  • 图 1  太赫兹时域光谱散射测量系统光路图

    Fig. 1.  Scattering measurement system of terahertz time domain.

    图 2  目标区太赫兹波场强分布图(单位: μV)

    Fig. 2.  Distribution of the field intensity (unit: µV).

    图 3  直径50 mm金属球RCS

    Fig. 3.  RCS of the sphere with the diameter of 50 mm.

    图 4  直径20.9 mm金属圆盘RCS

    Fig. 4.  RCS of the disk with thediameterof 20.9 mm.

    图 5  金属圆柱RCS定标结果

    Fig. 5.  RCS of the cylinder with the diameter of 20 mm and height of 20 mm.

    图 6  贯穿孔结构平板实物

    Fig. 6.  Photos of the plate with through-holes.

    图 7  螺钉结构平板实物

    Fig. 7.  RCS of the plate with screws.

    图 8  螺钉结构平板时域回波

    Fig. 8.  Time domain echo of the plate with screws.

    图 9  贯穿孔结构平板RCS测量值与理论值

    Fig. 9.  RCS of the plate with through-holes.

    图 10  螺钉结构平板RCS测量值与理论值

    Fig. 10.  RCS of the plate with screws.

    表 1  不同频点处复介电常数

    Table 1.  Complex permittivity in different frequency.

    频率/GHz30050070010002000
    介电常数实部–138064.3–133443.8–128980.3–122568.8–103475.4
    介电常数虚部372225.1354601.0337760.7313903.6245394.5
    下载: 导出CSV
  • [1]

    李允植 著(崔万照 译) 2012 太赫兹科学与技术原理(北京: 国防工业出版社)第192页

    Lee Y S (translated by Cui W Z) 2012 Principles of Terahertz Science and Technology (Beijing: National Defence Industry Press) p192 (in Chinese)

    [2]

    许景周, 张希成 2007 太赫兹科学技术和应用(北京: 北京大学出版社)第206页

    Xu J Z, Zhang X C 2007 Applications of Terahertz Science and Technology (Beijing: Peking University Press) p206 (in Chinese)

    [3]

    DeMartinis G B, Coulombe M J, Horgan T M, Giles R H, Nixon W E 2010 Proc. AMTA 3

    [4]

    Goyette T M, Dickinson J C, Waldman J, Nixon W E 2000 SPIE 4053 615

    [5]

    McGowan R W, Cheville R A, Grischkowsky D R 2000 IEEE Trans. Microwave Theory & Techn. 48 417

    [6]

    Iwaszczuk K, Heiselberg H, Jepsen P U 2010 Opt. Express 18 26399Google Scholar

    [7]

    Gente R, Jansen C, Geise R, Peters O, Gente M, Krumbholz N, Möller C, Busch S, Koch M 2012 IEEE Trans. Terahertz Sci. Technol. 2 424Google Scholar

    [8]

    王瑞君 2015 博士学位论文 (长沙: 国防科技大学)

    Wang R J 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [9]

    Cheng B B, Jiang G, Wang C, Yang C 2013 IEEE Trans. Terahertz Sci. Technol. 3 594Google Scholar

    [10]

    成彬彬, 江舸, 陈鹏, 杨陈, 陆彬, 蔡英武, 邓贤进, 陈樟, 张健, 周传明 2013 太赫兹科学与电子信息学报 1 7

    Cheng B B, Jiang K, Chen P, Yang C, Lu B, Cai Y W, Deng X J, Chen Z, Zhang J, Zhou C M 2013 J. Terahertz Sci. Electron. Inform. Technol. 1 7

    [11]

    张旭涛, 孙金海, 蔡禾, 张少华 2016 红外与激光工程 45 11

    Zhang X T, Sun J H, Cai H, Zhang S C 2016 Infrared and Laser Engineering 45 11

    [12]

    黄培康, 殷红成, 许小剑 2005 雷达目标特性(北京: 电子工业出版社) 第21页, 第48—61页

    Huang P K, Yin H C, Xu X J 2005 Radar Target Characteristics (Beijing: Publishing House of Electronics Industry)p21, pp48–61 (in Chinese)

    [13]

    Yla-Oijala P, Taskinen M, Sarvas J 2005 Prog. Electromagn. Res. 52 81Google Scholar

    [14]

    Song J M, Lu C C, Chew W C 1997 IEEE Trans. Aantennas Propagat. 45 1488Google Scholar

    [15]

    巩露露 2010 博士学位论文(南京: 南京理工大学)

    Gong L L 2010 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese)

  • [1] 徐振, 罗曼, 李吉宁, 刘龙海, 徐德刚. 太赫兹金属线波导传输特性实验研究及模拟分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240279
    [2] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [3] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [4] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [5] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [6] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [7] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [8] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [9] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析. 物理学报, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [10] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究. 物理学报, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [13] 王瑞君, 邓彬, 王宏强, 秦玉亮. 太赫兹与远红外频段下铝质目标电磁特性与计算. 物理学报, 2014, 63(13): 134102. doi: 10.7498/aps.63.134102
    [14] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [15] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [17] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [18] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [19] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
    [20] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
计量
  • 文章访问数:  7751
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-06-05
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回