-
相对论返波管被认为是最具有应用潜力的高功率微波器件之一. 随着输出微波功率的进一步提高, 相对论返波管内部包括收集极处的击穿现象越来越严重, 最终导致脉冲缩短, 成为器件向高功率、高能量方向发展中的最大障碍, 也是目前制约其发展的重要问题之一. 本文基于自主研发的2.5维粒子模拟软件UNIPIC-2D, 采用动态释气模型研究了不同释气系数下相对论返波管收集极释气与电离过程及引导磁场的影响. 粒子模拟结果表明, 随着电子不断轰击收集极, 收集极表面气压升高, 并发生气体电离, 产生的等离子体沿引导磁场进入慢波结构区域, 影响束-波相互作用过程, 使得输出功率下降; 随着释气系数的增大, 脉冲缩短现象越来越明显; 在低引导磁场情况下, 击穿以及脉冲缩短现象得到一定的缓解.The relativistic backward-wave oscillator has been considered to be one of the most promising high-power microwave devices. As the output microwave power is further increased, the breakdown phenomenon inside the relativistic backward-wave oscillator, including the collector pole, becomes more and more serious, which eventually leads to the pulse shortening, becoming a biggest obstacle to the development of the device with high power and high energy. Such a problem has also been one of the important issues which constrain its development. Based on the 2.5D particle-in-cell simulation software, i.e. UNIPIC-2D developed by our research group, in this paper the dynamic gassing model is used to study the effects of the relativistic backward-wave oscillator collector breakdown process and the guiding magnetic field under different outgassing coefficients. The result of particle simulation demonstrates that as the electrons continue to bombard the collector, the surface pressure of the collector is increased, and gas ionization occurs. The generated plasma enters into the slow-wave structure along the guiding magnetic field, thus affecting the beam-wave interaction process and causing the output power to drop. With the increase of the gas release coefficient, the pulse shortening phenomenon becomes more and more obvious. In the case of low guiding magnetic field, the breakdown and pulse shortening are alleviated.
-
Keywords:
- relativistic backward-wave oscillator /
- collector /
- pulse shortening /
- breakdown
[1] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Piscataway, New Jersey: IEEE Press) pp310–380
[2] 宫玉彬, 张章, 魏彦玉, 孟凡宝, 范植开, 王文祥 2004 物理学报 53 3990Google Scholar
Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990Google Scholar
[3] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 83111Google Scholar
[4] 李小泽, 王建国, 童长江, 张海 2008 物理学报 57 4613Google Scholar
Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613Google Scholar
[5] Benford J, Benford G 1997 IEEE Trans. Plasma Sci. 25 311Google Scholar
[6] Insepov Z, Norem J, Vetizer S, Mahalingam S 2011 AIP Conf. Proc. 1406 523
[7] Cao Y B, Song Z M, Wu P, Fan Z Q, Zhang Y C, Teng Y, Sun J 2017 Phys. Plasmas 24 033109Google Scholar
[8] Korovin S D, Mesyats G A, Pegel I V, Polevin S D, Tarakanov V P 2000 IEEE Trans. Plasma Sci. 28 485Google Scholar
[9] Xiao R Z, Chen C H, Deng Y Q, Cao Y B, Sun J, Li J W 2016 Phys. Plasmas 23 063114Google Scholar
[10] Zhang J, Jin Z X, Yang J H, Zhong H H, et al. 2011 IEEE Trans. Plasma Sci. 39 1438Google Scholar
[11] Kovalev N F, Nechaev V E, Petelin M I 1998 IEEE Trans. Plasma Sci. 26 246Google Scholar
[12] 梁玉钦, 邵浩, 孙钧, 等 2014 强激光与粒子束 26 26063010
Liang Y Q, Shao H, Sun J, et al. 2014 High Power Laser and Particle Beams 26 26063010
[13] Miao T Z, Bai X C, Sun J, Zhang X W, Cao Y B, Wu P, Shi Y C, Shao H 2017 Phys. Plasmas 24 123106Google Scholar
[14] 傅竹风, 胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第433−476页
Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433−476 (in Chinese)
[15] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar
[16] Bird R B, Lightfoot E N, Stewart W E 1961 AIChE J. 7 5J
[17] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar
[18] Wang H G, Li Y D, Liu C L, Zhou Y, Liu M Q 2010 IEEE Trans. Plasma Sci. 38 2062Google Scholar
[19] IAEA http://www-amdis.iaea.org/ALADDIN [2019-4-15]
[20] 董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901Google Scholar
Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901Google Scholar
[21] 蔡利兵, 王建国 2011 物理学报 60 025217Google Scholar
Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar
[22] Vaughan R M 1988 IEEE Trans. Electron Dev. 35 1172Google Scholar
[23] 杨文晋, 李永东, 刘纯亮 2013 物理学报 62 087901Google Scholar
Yang W J, Li Y D, Liu C L 2013 Acta Phys. Sin. 62 087901Google Scholar
[24] 李姝敏, 李永东, 刘震 2017 强激光与粒子束 29 29063001
Li S M, Li Y D, Liu Z 2017 High Power Laser and Particle Beams 29 29063001
[25] 邵剑波, 马乔生, 谢鸿全, 李正红 2015 微波学报 31 62
Shao J B, Ma Q S, Xie H Q, Li X H 2015 J. Microw. 31 62
-
图 6 释气系数λ = 2情况下的模拟结果 (a)电子实空间分布; (b)电子相空间分布; (c)−(f)分别为4, 16, 28, 40 ns时离子实空间分布; (g)收集极表面气压随时间的变化
Fig. 6. Simulation result with outgassing coefficient λ of 2: (a) Electronic real-time spatial distribution; (b) electronic phase spatial distribution; (c)−(f) polar space distribution at 4, 16, 28, 40 ns; (g) surface pressure curve over time.
-
[1] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Piscataway, New Jersey: IEEE Press) pp310–380
[2] 宫玉彬, 张章, 魏彦玉, 孟凡宝, 范植开, 王文祥 2004 物理学报 53 3990Google Scholar
Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990Google Scholar
[3] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 83111Google Scholar
[4] 李小泽, 王建国, 童长江, 张海 2008 物理学报 57 4613Google Scholar
Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613Google Scholar
[5] Benford J, Benford G 1997 IEEE Trans. Plasma Sci. 25 311Google Scholar
[6] Insepov Z, Norem J, Vetizer S, Mahalingam S 2011 AIP Conf. Proc. 1406 523
[7] Cao Y B, Song Z M, Wu P, Fan Z Q, Zhang Y C, Teng Y, Sun J 2017 Phys. Plasmas 24 033109Google Scholar
[8] Korovin S D, Mesyats G A, Pegel I V, Polevin S D, Tarakanov V P 2000 IEEE Trans. Plasma Sci. 28 485Google Scholar
[9] Xiao R Z, Chen C H, Deng Y Q, Cao Y B, Sun J, Li J W 2016 Phys. Plasmas 23 063114Google Scholar
[10] Zhang J, Jin Z X, Yang J H, Zhong H H, et al. 2011 IEEE Trans. Plasma Sci. 39 1438Google Scholar
[11] Kovalev N F, Nechaev V E, Petelin M I 1998 IEEE Trans. Plasma Sci. 26 246Google Scholar
[12] 梁玉钦, 邵浩, 孙钧, 等 2014 强激光与粒子束 26 26063010
Liang Y Q, Shao H, Sun J, et al. 2014 High Power Laser and Particle Beams 26 26063010
[13] Miao T Z, Bai X C, Sun J, Zhang X W, Cao Y B, Wu P, Shi Y C, Shao H 2017 Phys. Plasmas 24 123106Google Scholar
[14] 傅竹风, 胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第433−476页
Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433−476 (in Chinese)
[15] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar
[16] Bird R B, Lightfoot E N, Stewart W E 1961 AIChE J. 7 5J
[17] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar
[18] Wang H G, Li Y D, Liu C L, Zhou Y, Liu M Q 2010 IEEE Trans. Plasma Sci. 38 2062Google Scholar
[19] IAEA http://www-amdis.iaea.org/ALADDIN [2019-4-15]
[20] 董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901Google Scholar
Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901Google Scholar
[21] 蔡利兵, 王建国 2011 物理学报 60 025217Google Scholar
Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar
[22] Vaughan R M 1988 IEEE Trans. Electron Dev. 35 1172Google Scholar
[23] 杨文晋, 李永东, 刘纯亮 2013 物理学报 62 087901Google Scholar
Yang W J, Li Y D, Liu C L 2013 Acta Phys. Sin. 62 087901Google Scholar
[24] 李姝敏, 李永东, 刘震 2017 强激光与粒子束 29 29063001
Li S M, Li Y D, Liu Z 2017 High Power Laser and Particle Beams 29 29063001
[25] 邵剑波, 马乔生, 谢鸿全, 李正红 2015 微波学报 31 62
Shao J B, Ma Q S, Xie H Q, Li X H 2015 J. Microw. 31 62
计量
- 文章访问数: 7327
- PDF下载量: 46
- 被引次数: 0