搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三点、四点法机械性能测试建模及其在太阳电池中的应用

何仁 李英叶 陈敬欣 赵学玲 汤欢 张丽娜 沈艳娇 李锋 杨琳 韦德远

引用本文:
Citation:

三点、四点法机械性能测试建模及其在太阳电池中的应用

何仁, 李英叶, 陈敬欣, 赵学玲, 汤欢, 张丽娜, 沈艳娇, 李锋, 杨琳, 韦德远

Three-point and four-point mechanical bending test modeling and application in solar cells

He Ren, Li Ying-Ye, Chen Jing-Xin, Zhao Xue-Ling, Tang Huan, Zhang Li-Na, Shen Yan-Jiao, Li Feng, Yang Lin, Wei De-Yuan
PDF
HTML
导出引用
  • 用三点弯曲和四点弯曲测试方法分别测试了单晶硅片和双面电池两种不同样片的机械性能, 通过建立模型, 探讨了不同的弯曲测试方法对样片的最大弯曲位移、最大载荷和断裂强度的影响. 研究表明: 三点弯曲和四点弯曲测试测量的最大弯曲位移相差不大, 但对单晶硅片而言, 三点弯曲测试方法测量结果离散度较大, 四点弯曲测试方法测量结果离散度较小. 然而不论是单晶硅片还是双面电池, 四点弯曲测试方法均能通过分散载荷的方式而增加样片的承载能力, 四点弯曲测试方法计算得出的断裂强度较小于三点弯曲测试的结果.
    Silicon (Si)-wafer-based solar cells have dominated the global market with a share exceeding 90% due to their abundant source material and well-known physical and chemical properties. The brittleness of silicon material limits its further applications. It is necessary to investigate the material strength properties of Si wafer and/or Si solar cells, which can guide the fabrication process of Si solar cells to avoid breaking the Si wafers. The Si material strength properties have been extensively investigated by the methods of three-point bending test and four-point bending test. However, the difference between these two methods has not been studied so far.In this work, the mechanical strength properties of monocrystalline silicon (c-Si) wafer and bifacial c-Si solar cells are measured by three-point bending test and four-point bending test respectively. The average value of the maximum bending displacements has a little discrepancy between the results of the three-point bending test and four-point bending test methods. It is worth noting that the degree of dispersion of the Si wafer test results of the three-point bending test is larger than those of the four-point bending test. And the results of the dispersion of the Si bifacial solar cells, obtained from the two bending test methods, show no difference between them due to the existence of metalized electrodes. Whether the measured sample is Si wafer or Si solar cell, the average value of the maximum load, obtained from the four-point bending test, is higher than that from the three point-bending test method, and the average value of the fracture strength, obtained from the four-point bending test, is lower than that from the three-point bending test method. By establishing the models of different beams, the applied load gets dispersed through two bars of the four-point bending test method, whereas the applied load is directly applied to the sample through one bar of the three-point bending test method, which can explain the relatively large difference between these two test methods.
      通信作者: 韦德远, deyuan.wei@hotmail.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61704045)和国家自然科学基金(批准号: 11604072)资助的课题.
      Corresponding author: Wei De-Yuan, deyuan.wei@hotmail.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61704045) and the National Natural Science Foundation of China (Grant No. 11604072).
    [1]

    Battaglia C, Cuevas A, de Wolf S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [2]

    Borrerolopez O, Vodenitcharova T, Hoffman M, Leo A J 2009 J. Am. Ceram. Soc. 92 2713Google Scholar

    [3]

    Paul I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991Google Scholar

    [4]

    Funke C, Wolf S, Stoyan D 2009 J. Sol. Energy Eng. 131 011012Google Scholar

    [5]

    Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn J 2007 Microelectron. Reliab. 47 168Google Scholar

    [6]

    Sekhar H, Fukuda T, Tanahashi K 2018 Jpn. J. Appl. Phys. 57 08RB08Google Scholar

    [7]

    Li Z L, Wang L, Yang D R, Zhu X, Shi Y Z, Jiang W L 2011 Acta Energiae Solaris Sinica 32 225

    [8]

    Wang P, Yu X G, Li Z L, Yang D R 2011 J. Cryst. Growth 318 230Google Scholar

    [9]

    Rengarajan K N, Radchenko I, Illya G, Handara V, Kunz M, Tamura N, Budiman A S 2016 8th International Conference on Materials for Advanced Technologies Singapore, 28 June–3 July, 2015 p76

    [10]

    Heilbronn B, de Moro F, Jolivet E, Tupin E, Chau B, Varrot R, Drevet B, Bailly S, Rey D, Lignier H, Xi Y H, Mangelinck N, Reinhart G, Regula G 2015 Cryst. Res. Technol. 50 101Google Scholar

    [11]

    Barredo J, Parra V, Guerrero I, Fraile A, Hermanns L 2013 Prog. Photovoltaics 22 1204

    [12]

    Woo J, Kim Y, Kim S, Jang J, Han H N, Choi K J, Kim I, Kim J 2017 Scripta Mater. 140 1Google Scholar

    [13]

    Oswald M, Loewenstein T, Schubert G, Schoenfelder S 2012 6th International Workshop on Crystalline Silicon Solar Cells Aixles-bains France, October 8–11, 2012

    [14]

    Echizenya D, Sakamoto H, Sasaki K 2011 Procedia Engineering 10 1440Google Scholar

    [15]

    Haase F, Kasewieter J, Köntges M 2016 6th International Conference on Silicon Photovoltaics Chambery France, March 7–9, 2016 p554

    [16]

    Popovich V A 2014 Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells (Netherlands: Delft University of Technology) p115

    [17]

    Mansfield B R, Armstrong D E, Wilshaw P R, Murphy J D 2009 Solid State Phenomena 156158 p55

    [18]

    Cotterell B, Chen Z, Han J, Tan N 2003 J. Electron. Packaging 125 114Google Scholar

    [19]

    Sekhar H, Fukuda T, Tanahashi K, Shirasawa K, Takato H, Ohkubo K, Ono H, Sampei Y, Kobayashi T 2018 Jpn. J. Appl. Phys. 57 095501Google Scholar

    [20]

    Kaule F, Kohler B, Hirsch J, Schoenfeldera S, Lauscha D 2018 Sol. Energ. Mat. Sol. C. 185 511Google Scholar

    [21]

    Gou W X 2010 Mechanics of Materials (Beijing: Science Press) p152

  • 图 1  双面电池结构示意图

    Fig. 1.  The schematic diagram of the structure of bifacial solar cell.

    图 2  测试参数示意图 (a) 三点弯曲; (b) 四点弯曲

    Fig. 2.  The schematic of test parameter: (a) Three point bengding; (b) four point bengding.

    图 3  硅片三点和四点弯曲测试数据对比 (a) 载荷与位移的变化曲线; (b) 最大弯曲位移; (c) 最大载荷; (d) 断裂强度

    Fig. 3.  Parameter comparison of silicon wafer test of three point and four point bending test: (a) Force as function of the bending value; (b) maximum bending displacement; (c) maximum force; (d) fracture strength.

    图 4  双面电池三点和四点弯曲测试数据对比 (a) 载荷与位移的变化曲线; (b) 最大弯曲位移; (c) 最大载荷; (d) 断裂强度

    Fig. 4.  Parameter comparison of bifacial solar cells test of three point and four point bending test: (a) Force as function of the bending value; (b) maximum bending displacement; (c) maximum force; (d) fracture strength.

    图 5  作用力和弯矩图 (a) 三点弯曲; (b) 四点弯曲

    Fig. 5.  The model diagram of force and bending moment: (a) Three point bending test; (b) four point bending test.

    表 1  三点弯曲和四点弯曲测试的比较

    Table 1.  Comparison of three point bending and four point bending tests.

    单位国家样片厚度测试方法研究内容年份参考文献
    TNI-UCC爱尔兰单晶硅片50—525 μm三点弯曲用统计方法建立了不同厚度单晶硅材料断裂强度的模型2006[3]
    Fraunhofer -IMM德国单晶硅片48—200 μm三点弯曲分析了磨削、抛光、蚀刻工艺对薄硅试样机械强度的影响2007[5]
    RERC-FREI-AIST日本单晶硅片200—250 μm三点弯曲金刚线切割时产生的应力损伤层对单晶硅片机械性能的影响2008[6]
    浙江大学中国单晶硅电池200 μm三点弯曲背电极花样对单晶硅电池的机械强度有明显影响2011[7]
    浙江大学中国多晶硅片220 μm三点弯曲铸锭多晶硅中, 锗掺杂能增强多晶硅片的机械强度2011[8]
    SUTD新加坡光伏组件三点弯曲封装材料对太阳能光伏组件的可靠性影响2016[9]
    Solarforce S.A.法国多晶硅片60—140 μm四点弯曲研究了带状生长多晶硅的弯曲强度随不同工艺条件的变化2015[10]
    UNSW澳大利亚多晶硅片200 μm四点弯曲硅片的边缘缺陷对多晶硅片断裂强度的影响2009[2]
    CMME西班牙多晶、单晶、类单晶200 μm四点弯曲对相同厚度的多晶、单晶、类单晶的晶体硅片的机械强度进行了比较2014[11]
    IEP-TUBF德国多晶硅片250—300 μm四点弯曲研究了损伤腐蚀对太阳能硅片力学性能的影响2009[4]
    UNIST韩国单晶硅片50 μm四点弯曲同制绒工艺改变硅片表面形貌对晶体硅机械性能的影响2017[12]
    Fraunhofer -CSP德国多晶硅片四点弯曲激光钻孔对机械性能的影响2012[13]
    MEC日本多晶硅片200—300 μm四点弯曲金刚线切割多晶硅片的弯曲强度, 并对不同强度值产生的原因进行了分析2011[14]
    ISFH德国光伏组件四点弯曲标准尺寸太阳能光伏组件在受压情况下的裂纹分布情况2016[15]
    注: TNI-UCC, Tyndall National Institute, University College Cork (科克大学, 廷德尔国立研究所); Fraunhofer-IMM, Fraunhofer-Institute for Mechanics of Materials (弗劳恩霍夫材料力学研究所); RERC-FREI-AIST, Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology (国家先进工业科学技术研究所, 福岛可再生能源研究所, 可再生能源研究中心); SUTD, Singapore University of Technology and Design (新加坡科技设计大学) UNSW, University of New South Wales (新南威尔士大学); IEP-TUBF, Institute of Experimental Physics, TU Bergakademie Freiberg (弗莱贝格工业大学, 实验物理研究所); MEC, Mitsubishi Electric Corporation (三菱电力公司); Fraunhofer-CSP, Fraunhofer Center for Silicon Photovoltaics (弗劳恩霍夫硅光电中心); CMME, Centre for Modelling in Mechanical Engineering (机械工程建模中心); Solarforce S.A., 太阳力股份有限公司; ISFH, Institute for Solar Energy Research Hamelin (哈梅林太阳能研究所); UNIST, Ulsan National Institute of Science and Technology (蔚山国家科学技术研究院).
    下载: 导出CSV
  • [1]

    Battaglia C, Cuevas A, de Wolf S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [2]

    Borrerolopez O, Vodenitcharova T, Hoffman M, Leo A J 2009 J. Am. Ceram. Soc. 92 2713Google Scholar

    [3]

    Paul I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991Google Scholar

    [4]

    Funke C, Wolf S, Stoyan D 2009 J. Sol. Energy Eng. 131 011012Google Scholar

    [5]

    Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn J 2007 Microelectron. Reliab. 47 168Google Scholar

    [6]

    Sekhar H, Fukuda T, Tanahashi K 2018 Jpn. J. Appl. Phys. 57 08RB08Google Scholar

    [7]

    Li Z L, Wang L, Yang D R, Zhu X, Shi Y Z, Jiang W L 2011 Acta Energiae Solaris Sinica 32 225

    [8]

    Wang P, Yu X G, Li Z L, Yang D R 2011 J. Cryst. Growth 318 230Google Scholar

    [9]

    Rengarajan K N, Radchenko I, Illya G, Handara V, Kunz M, Tamura N, Budiman A S 2016 8th International Conference on Materials for Advanced Technologies Singapore, 28 June–3 July, 2015 p76

    [10]

    Heilbronn B, de Moro F, Jolivet E, Tupin E, Chau B, Varrot R, Drevet B, Bailly S, Rey D, Lignier H, Xi Y H, Mangelinck N, Reinhart G, Regula G 2015 Cryst. Res. Technol. 50 101Google Scholar

    [11]

    Barredo J, Parra V, Guerrero I, Fraile A, Hermanns L 2013 Prog. Photovoltaics 22 1204

    [12]

    Woo J, Kim Y, Kim S, Jang J, Han H N, Choi K J, Kim I, Kim J 2017 Scripta Mater. 140 1Google Scholar

    [13]

    Oswald M, Loewenstein T, Schubert G, Schoenfelder S 2012 6th International Workshop on Crystalline Silicon Solar Cells Aixles-bains France, October 8–11, 2012

    [14]

    Echizenya D, Sakamoto H, Sasaki K 2011 Procedia Engineering 10 1440Google Scholar

    [15]

    Haase F, Kasewieter J, Köntges M 2016 6th International Conference on Silicon Photovoltaics Chambery France, March 7–9, 2016 p554

    [16]

    Popovich V A 2014 Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells (Netherlands: Delft University of Technology) p115

    [17]

    Mansfield B R, Armstrong D E, Wilshaw P R, Murphy J D 2009 Solid State Phenomena 156158 p55

    [18]

    Cotterell B, Chen Z, Han J, Tan N 2003 J. Electron. Packaging 125 114Google Scholar

    [19]

    Sekhar H, Fukuda T, Tanahashi K, Shirasawa K, Takato H, Ohkubo K, Ono H, Sampei Y, Kobayashi T 2018 Jpn. J. Appl. Phys. 57 095501Google Scholar

    [20]

    Kaule F, Kohler B, Hirsch J, Schoenfeldera S, Lauscha D 2018 Sol. Energ. Mat. Sol. C. 185 511Google Scholar

    [21]

    Gou W X 2010 Mechanics of Materials (Beijing: Science Press) p152

  • [1] 王胤, 王壬颍, 陈桥, 邓永和. 点间隧穿耦合对四能级三量子点电磁感应透明介质孤子动力学的影响. 物理学报, 2024, 73(4): 044202. doi: 10.7498/aps.73.20231194
    [2] 谢冰鸿, 徐国凯, 雷保新, 肖绍球, 喻忠军, 朱大立. 谐振型自偏置磁电换能器的建模与性能研究. 物理学报, 2024, 73(14): 147502. doi: 10.7498/aps.73.20240615
    [3] 沈勇, 沈煜航, 董家齐, 李佳, 石中兵, 宗文刚, 潘莉, 李继全. 特定湍动激励-响应类型二次非线性系统双谱分析仿真建模. 物理学报, 2024, 73(18): 184701. doi: 10.7498/aps.73.20232013
    [4] 刘行, 徐帅, 高金柱, 何济洲. 基于三个耦合量子点的四端混合驱动制冷机. 物理学报, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [5] 陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟. 脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能. 物理学报, 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [6] 杨建勇, 陈华俊. 基于超强耦合量子点-纳米机械振子系统的全光学质量传感. 物理学报, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [7] 马爽, 乌仁图雅, 特古斯, 武晓霞, 管鹏飞, 那日苏. FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究. 物理学报, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [8] 王铁山, 张多飞, 陈亮, 律鹏, 杜鑫, 袁伟, 杨迪. 辐照导致硼硅酸盐玻璃机械性能变化. 物理学报, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [9] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [10] 包伯成, 王春丽, 武花干, 乔晓华. 忆阻电路降维建模与特性分析. 物理学报, 2014, 63(2): 020504. doi: 10.7498/aps.63.020504
    [11] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [12] 黄伟其, 周年杰, 尹君, 苗信建, 黄忠梅, 陈汉琼, 苏琴, 刘世荣, 秦朝建. 硅量子点的形状及其弯曲表面效应. 物理学报, 2013, 62(8): 084205. doi: 10.7498/aps.62.084205
    [13] 徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁. 单晶硅片中的位错在快速热处理过程中的滑移. 物理学报, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [14] 潘晓娟, 贺西平. 厚圆盘弯曲振动研究. 物理学报, 2010, 59(11): 7911-7916. doi: 10.7498/aps.59.7911
    [15] 丁万昱, 徐 军, 陆文琪, 邓新绿, 董 闯. 基片温度对SiNx薄膜结晶状态及机械性能的影响. 物理学报, 2008, 57(8): 5170-5175. doi: 10.7498/aps.57.5170
    [16] 李 军, 董海鹰. 基于小波核偏最小二乘回归方法的混沌系统建模研究. 物理学报, 2008, 57(8): 4756-4765. doi: 10.7498/aps.57.4756
    [17] 蔡鑫伦, 黄德修, 张新亮. 基于全矢量模式匹配法的三维弯曲波导本征模式计算. 物理学报, 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268
    [18] 王龙海, 于 军, 王耘波, 彭 刚, 刘 锋, 高峻雄. 基于静态电滞回线的铁电电容模型. 物理学报, 2005, 54(2): 949-954. doi: 10.7498/aps.54.949
    [19] 叶美盈. 基于最小二乘支持向量机建模的混沌系统控制. 物理学报, 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [20] 杜庆华. 三合板梁弯曲问题. 物理学报, 1955, 11(3): 259-286. doi: 10.7498/aps.11.259
计量
  • 文章访问数:  15081
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-07-30
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回