搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下金红石相TiO2的晶界电学性质

王春杰 王月 高春晓

引用本文:
Citation:

高压下金红石相TiO2的晶界电学性质

王春杰, 王月, 高春晓

Grain boundary electrical characteristics for rutile TiO2 under pressure

Wang Chun-Jie, Wang Yue, Gao Chun-Xiao
PDF
HTML
导出引用
  • 应用电化学阻抗谱法研究了高压下金红石相TiO2的晶粒和晶界电学性质. 随着压力的升高, TiO2的电阻降低, 在相变区域内(11.5 GPa附近), 表现出了无规则的变化. 通过对阻抗谱的测量发现, 在较低的压力下(常压到11.5 GPa范围内), TiO2的晶界特性不明显. 但是随着压力(大于11.5 GPa)的升高, 相变后TiO2的晶界特性变得显著. 这说明压力作用下晶粒和晶界的行为与TiO2相结构的转变有着密切的联系. 通过计算得到, 当压力高于25.2 GPa时, TiO2的晶粒边界空间电荷势稳定存在, 其值约为30 mV. 分析表明高压下TiO2晶界空间电荷势来源于静电相互作用和弹性相互作用两部分共同作用的影响.
    In this paper, the grain and grain boundary characteristics of pure rutile TiO2 under pressure are investigated by electrochemical impedance spectroscopy equipped with diamond anvil cell (DAC). Only one semi-circle can be detected under each pressure in a range of 1.4–11.5 GPa. With the pressure increasing, the shape of semi-circle is unchanged, while the size of semi-circle gradually decreases, which can be attributed to the decrease of bulk resistance due to the reduction of band gap under pressure. The absence of grain boundary characteristic in the impedance spectra signifying that Schottky barrier is not present at the grain boundaries. With further increasing pressure, an interesting phenomenon can be observed above 12.7 GPa. The shape of semi-circle is distorted, and exhibits two overlapping semi-circles. The first semi-circle (high frequency) originates from the contribution of bulk, and the second one (low frequency) can be ascribed to the effect of grain boundary. The occurrence of grain boundary semicircle indicates that the aggregation of space charges at the grain boundary. In this case, the phase transformation from rutile to baddeleyite structure occurs, the electric transport mechanism is changed, and new lattice defects are formed. Also, two discontinuous points (11.5 and 15.4 GPa) can be detected in the resistance curve. The remarkable change of resistance occurs at 12.7 GPa which is corresponding to the phase transition from rutile to baddeleyite phase. The occurrence of phase transition leads the new interfacial energy to occur, the total energy of system to increase, and the movement of carriers to impede. Thus, the resistance increases significantly, and the maximum value occurs at 15 GPa. Further analysis indicates that the space charge potential is modified with pressure increasing, implying that the electrical transport properties of TiO2 are related closely to phase transition. With the pressure increasing from 12.7 to 25.2 GPa, the irregular change of space charge potential can be attributed to the rutile and baddeleyite phase coexisting. When the pressure is higher than 25.2 GPa, the space charge potential is a constant (about 30 mV). According to the investigations, the TiO2 grain boundary space charge potential under pressure is mainly contributed from two parts: the electrostatic interaction and the elastic interaction.
      通信作者: 王月, wangsuiyue@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 11404032, 11404034)、辽宁省科技厅项目(批准号: 20170540014, 20170540009)和辽宁省教育厅项目(批准号: LJ2019013)资助的课题.
      Corresponding author: Wang Yue, wangsuiyue@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404032, 11404034), the Foundation of the Science and Technology Department of Liaoning Province, China (Grant Nos. 20170540014, 20170540009), and the Foundation of the Education Department of Liaoning Province, China (Grant No. LJ2019013).
    [1]

    Langlet M, Burgos M, Coutier C, Jimenez C, Morant C, Manso M 2001 J. Sol-Gel Sci. Technol. 22 139Google Scholar

    [2]

    Dubrovinsky L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B, Johansson B 2001 Nature 410 653Google Scholar

    [3]

    Goresy A E, Chen M, Dubrovinsky L, Gillet P, Graup G 2001 Science 293 1467Google Scholar

    [4]

    Hiroshi K, Monami Y, Meiko K, Yoshiyuki I, Daisuke M, Masak A 2018 Phys. Chem. Miner. 45 963Google Scholar

    [5]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Staun O, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [6]

    Dong Z H, Xiao F P, Zhao A K, Liu L J, Tsun-Kong S A, Song Y 2016 RSC Adv. 6 76142Google Scholar

    [7]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. Rev. B 71 184302Google Scholar

    [8]

    Navrotsky A 2003 Geochem. Trans. 4 34Google Scholar

    [9]

    Mei Z G, Wang Y, Shang S L, Liu Z K 2011 Inorg. Chem. 50 6996Google Scholar

    [10]

    Varghese S, Muddle B C 2007 Phys. Rev. Lett. 98 035502Google Scholar

    [11]

    Zhang G, Wu B, Wang J, Zhang H, Liu H, Zhang J, Liu C, Gu G, Tian L, Ma Y, Gao C 2017 Sci. Rep. 7 2656Google Scholar

    [12]

    Li Y, Gao Y, Han Y, Liu C L, Peng G, Wang Q L, Ke F, Ma Y Z, Gao C X 2015 Appl. Phys. Lett. 107 142103Google Scholar

    [13]

    Qu T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105Google Scholar

    [14]

    王月, 张凤霞, 王春杰, 高春晓 2014 物理学报 63 216401Google Scholar

    Wang Y, Zhang F X, Wang C J, Gao C X 2014 Acta Phys. Sin. 63 216401Google Scholar

    [15]

    Ohsaka T, Yamaoka S, Shimomura O 1979 Solid State Commun. 30 345

    [16]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [17]

    Olse J S, Gerward L, Jiang J 1999 J. Phys. Chem. Solids 60 229Google Scholar

    [18]

    Wang Q, Liu C, Han Y, Gao C, Ma Y 2016 Rev. Sci. Instrum. 87 123904Google Scholar

    [19]

    Wang Q L, Varghese O, Grimes C A, Dickey E C 2007 Solid State Ionics 178 187Google Scholar

    [20]

    Wang Q, Lian G D, Dickey E C 2004 Acta Mater. 52 809Google Scholar

    [21]

    Al-Khatatbeh Y, Lee K M, Kiefer B 2009 Phys. Rev. B 79 134114Google Scholar

    [22]

    Sato H, Endo S, Sugiyama M, Kikegawa T, Shimomura O, Kusaba K 1991 Science 251 78Google Scholar

    [23]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版1) (北京: 科学出版社)第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [24]

    Kliewer K, Koehler J 1965 Phys. Rev. A 140 1226

    [25]

    Ikeda J A S, Chiang Y M 1993 J. Am. Ceram. Soc. 76 2437Google Scholar

    [26]

    Fleig J, Rodewald S, Maier J 2000 J. Appl. Phys. 87 2372Google Scholar

    [27]

    Eshelby J D 1956 Solid. State. Phys. 3 79Google Scholar

    [28]

    Yan M F, Cannon R M, Bowen H K 1983 J. Appl. Phys. 54 764Google Scholar

    [29]

    Yan M F, Rhodes W W 1987 Materials Science Research (Vol. 21) (US: Springer) p519

  • 图 1  (a) 金刚石砧面上微电路结构示意图, 1-钼电极, 2-在钼膜上沉积的Al2O3绝缘层, 3-沉积到金刚石砧面上的Al2O3, 4-裸露的金刚石砧面, A和B为微电路的接触端; (b) 金刚石对顶砧的剖面示意图

    Fig. 1.  (a) The configuration of a complete microcircuit on a diamond anvil: 1-the Mo electrodes, 2-the Al2O3 layer deposited on the Mo film, 3-the Al2O3 layer deposited on the diamond anvil, 4-exposed diamond anvil, A and B are the contact ends of the microcircuit; (b) the cross section of the designed diamond-anvil-cell.

    图 2  金红石相TiO2在0—12 GPa压力范围内阻抗谱变化示意图 (a) 1.4 GPa; (b) 4.2 GPa; (c) 8.5 GPa; (d) 11.5 GPa

    Fig. 2.  The impedance spectra of TiO2 measured within 0−12 GPa in DAC: (a) 1.4 GPa; (b) 4.2 GPa; (c) 8.5 GPa; (d) 11.5 GPa.

    图 3  TiO2在高压环境下(12.7—39.9 GPa)测量的阻抗谱变化曲线

    Fig. 3.  The impedance spectra of TiO2 measured under high pressure (12.7−39.9 GPa).

    图 4  TiO2总电阻随压力的变化关系

    Fig. 4.  The change of resistance of TiO2 as a function of pressure.

    图 5  TiO2晶界空间电荷势($\phi $)随压力的变化关系

    Fig. 5.  The change of space charge potential ($\phi $) of TiO2 as a function of pressure.

  • [1]

    Langlet M, Burgos M, Coutier C, Jimenez C, Morant C, Manso M 2001 J. Sol-Gel Sci. Technol. 22 139Google Scholar

    [2]

    Dubrovinsky L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B, Johansson B 2001 Nature 410 653Google Scholar

    [3]

    Goresy A E, Chen M, Dubrovinsky L, Gillet P, Graup G 2001 Science 293 1467Google Scholar

    [4]

    Hiroshi K, Monami Y, Meiko K, Yoshiyuki I, Daisuke M, Masak A 2018 Phys. Chem. Miner. 45 963Google Scholar

    [5]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Staun O, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [6]

    Dong Z H, Xiao F P, Zhao A K, Liu L J, Tsun-Kong S A, Song Y 2016 RSC Adv. 6 76142Google Scholar

    [7]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. Rev. B 71 184302Google Scholar

    [8]

    Navrotsky A 2003 Geochem. Trans. 4 34Google Scholar

    [9]

    Mei Z G, Wang Y, Shang S L, Liu Z K 2011 Inorg. Chem. 50 6996Google Scholar

    [10]

    Varghese S, Muddle B C 2007 Phys. Rev. Lett. 98 035502Google Scholar

    [11]

    Zhang G, Wu B, Wang J, Zhang H, Liu H, Zhang J, Liu C, Gu G, Tian L, Ma Y, Gao C 2017 Sci. Rep. 7 2656Google Scholar

    [12]

    Li Y, Gao Y, Han Y, Liu C L, Peng G, Wang Q L, Ke F, Ma Y Z, Gao C X 2015 Appl. Phys. Lett. 107 142103Google Scholar

    [13]

    Qu T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105Google Scholar

    [14]

    王月, 张凤霞, 王春杰, 高春晓 2014 物理学报 63 216401Google Scholar

    Wang Y, Zhang F X, Wang C J, Gao C X 2014 Acta Phys. Sin. 63 216401Google Scholar

    [15]

    Ohsaka T, Yamaoka S, Shimomura O 1979 Solid State Commun. 30 345

    [16]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [17]

    Olse J S, Gerward L, Jiang J 1999 J. Phys. Chem. Solids 60 229Google Scholar

    [18]

    Wang Q, Liu C, Han Y, Gao C, Ma Y 2016 Rev. Sci. Instrum. 87 123904Google Scholar

    [19]

    Wang Q L, Varghese O, Grimes C A, Dickey E C 2007 Solid State Ionics 178 187Google Scholar

    [20]

    Wang Q, Lian G D, Dickey E C 2004 Acta Mater. 52 809Google Scholar

    [21]

    Al-Khatatbeh Y, Lee K M, Kiefer B 2009 Phys. Rev. B 79 134114Google Scholar

    [22]

    Sato H, Endo S, Sugiyama M, Kikegawa T, Shimomura O, Kusaba K 1991 Science 251 78Google Scholar

    [23]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版1) (北京: 科学出版社)第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [24]

    Kliewer K, Koehler J 1965 Phys. Rev. A 140 1226

    [25]

    Ikeda J A S, Chiang Y M 1993 J. Am. Ceram. Soc. 76 2437Google Scholar

    [26]

    Fleig J, Rodewald S, Maier J 2000 J. Appl. Phys. 87 2372Google Scholar

    [27]

    Eshelby J D 1956 Solid. State. Phys. 3 79Google Scholar

    [28]

    Yan M F, Cannon R M, Bowen H K 1983 J. Appl. Phys. 54 764Google Scholar

    [29]

    Yan M F, Rhodes W W 1987 Materials Science Research (Vol. 21) (US: Springer) p519

  • [1] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊. Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响. 物理学报, 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [2] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变. 物理学报, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [3] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [5] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [6] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [7] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [8] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [9] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [10] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [11] 晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌. K0.8Fe2Se2晶体c轴向载流子输运特性的研究. 物理学报, 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [12] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [13] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [14] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [15] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [16] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [17] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究. 物理学报, 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [18] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [19] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [20] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
计量
  • 文章访问数:  8258
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-26
  • 修回日期:  2019-07-29
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回