搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

n型GaN过渡族难熔金属欧姆电极对比

何天立 魏鸿源 李成明 李庚伟

引用本文:
Citation:

n型GaN过渡族难熔金属欧姆电极对比

何天立, 魏鸿源, 李成明, 李庚伟

Comparative study of n-GaN transition group refractory metal Ohmic electrode

He Tian-Li, Wei Hong-Yuan, Li Cheng-Ming, Li Geng-Wei
PDF
HTML
导出引用
  • 研究了过渡族难熔金属Hf体系Hf/Al电极在不同退火条件下与n型GaN的欧姆接触特性, 并与Ti基Ti/Al电极进行了对比. 采用圆点型传输线模型测量了Hf/Al和Ti/Al电极的比接触电阻率. 结果表明, 同等退火条件下的Hf/Al电极, 相比于传统Ti/Al电极, 展现出了更加优越的欧姆接触性能. 在N2氛围中低温650 ℃条件下退火60 s的Hf/Al电极得到了最低的比接触电阻率为4.28×10–5 Ω·cm2. 本文还利用深度剖析的俄歇电子能谱仪对电极的结构特性进行了分析, 经历退火的Hf/Al电极样品中金属与金属, 金属与GaN之间发生了相互扩散. 对Hf/Al, Ti/Al电极表面进行了扫描电子显微镜表征, 两种电极均表现出颗粒状的粗糙表面.
    Ohmic contact is directly related to the performance of GaN device and is one of the important factors affecting device performance. In recent years, many research groups have studied the electrode materials and annealing conditions of n-type GaN Ohmic contacts. In this paper, the ohmic contact properties and structural characteristics of the Hf/Al electrode of a transition group metal refractory metal Hf system under different annealing conditions are studied, and compared with those of the Ti-based ohmic contact Ti/Al electrode. The specific contact resistivity of each electrode is measured by a dot-type transmission line model, and the structural characteristics of the electrode are analyzed by using an Auger electron spectrometer which can be analyzed in depth. The results show that the Hf/Al electrode under the same annealing condition exhibits superior ohmic contact performance compared with the conventional Ti/Al electrode. At the same time, the lowest specific contact resistivity of the Hf/Al electrode annealed in an N2 atmosphere at a low temperature of 650 ℃ for 60 s is 4.28×10–5 Ω·cm2. The in-depth analysis of Auger electron spectrum shows that the Hf/Al electrode has a solid phase reaction with the n-type GaN material. In addition, the cross section of each electrode is observed by auger electron spectroscopy. In the Hf/Al electrode sample, the metal-semiconductor interface does not show voids after annealing. This situation occurs at the sample interface where the Ti/Al electrode is annealed at 650 ℃ for 60 s in N2 atmosphere and annealed at 850 ℃ for 30 s in N2 atmosphere. This is one of the reasons why the Hf/Al electrode sample has a lower specific contact resistivity. At the same time, the surface of Hf/Al electrode and Ti/Al electrode annealed at 850 ℃ are characterized by using scanning electron microscope. It is found that the surfaces of both electrodes subject to high temperature annealing show a similar granular rough surface, and this rough surface has a certain influence on the electrical properties of the GaN device. The rough surface formed by the electrode under such high temperature annealing conditions is an urgent problem to be solved in the future research. In summary, the study in this paper indicates the use of Hf/Al to form an ohmic contact with n-type GaN under a low temperature annealing condition.
      通信作者: 魏鸿源, why@semi.ac.cn ; 李庚伟, ligw@cugb.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0404201)和国家自然科学基金(批准号: 61774147, 61504128)资助的课题
      Corresponding author: Wei Hong-Yuan, why@semi.ac.cn ; Li Geng-Wei, ligw@cugb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404201) and the National Natural Science Foundation of China (Grant Nos. 61774147, 61504128)
    [1]

    Strite S, Morka Strite S, Morkoç H 1992 J. Vac. Sci. Technol. B: Microelectron Process Phenom 10 1237Google Scholar

    [2]

    Davydov V Y, Klochikhin A, Emtsev V V, Kurdyukov D, Ivanov S, Vekshin V, Bechstedt F, Furthmüller J, Aderhold J, Graul J 2002 Phys. Status Solidi B 234 787Google Scholar

    [3]

    Pearton S, Ren F, Zhang A, Lee K 2000 Mater. Sci. Eng. R. Rep. 30 55Google Scholar

    [4]

    Munoz E, Monroy E, Pau J, Calle F, Omnes F, Gibart P 2001 J. Phys. Condens. Matter 13 7115Google Scholar

    [5]

    Deger C, Born E, Angerer H, Ambacher O, Stutzmann M, Hornsteiner J, Riha E, Fischerauer G 1998 Appl. Phys. Lett. 72 2400Google Scholar

    [6]

    Huang Z, Goldberg R, Chen J, Zheng Y, Mott D B, Shu P 1995 Appl. Phys. Lett. 67 2825Google Scholar

    [7]

    Pimputkar S, Speck J S, DenBaars S P, Nakamura S 2009 Nat. Photonics 3 180Google Scholar

    [8]

    Ruvimov S, Liliental Z, Washburn J, Duxstad K, Haller E, Fan Z F, Mohammad S N, Kim W, Botchkarev A, Morkoc H 1996 Appl. Phys. Lett. 69 1556Google Scholar

    [9]

    Wang D F, Shiwei F, Lu C, Motayed A, Jah M, Mohammad S N, Jones K A, Salamanca-Riba L 2001 J. Appl. Phys. 89 6214Google Scholar

    [10]

    Selvanathan D, Zhou L, Kumar V, Adesida I 2002 Phys. Status Solidi B (a) 194 583Google Scholar

    [11]

    Iucolano F, Roccaforte F, Alberti A, Bongiorno C, Di Franco S, Raineri V 2006 J. Appl. Phys. 100 123706Google Scholar

    [12]

    Zhang T, Pu T, Xie T, Li L, Bu Y, Wang X, Ao J P 2018 Chin. Phys. B 27 078503Google Scholar

    [13]

    Yao J N, Lin Y C, Chuang Y L, Huang Y X, Shih W C, Sze S M, Chang E Y 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (Hsinchu) p419

    [14]

    Singh K, Chauhan A, Mathew M, Punia R, Meena S S, Gupta N, Kundu R S 2019 Appl. Phys. A 125 24

    [15]

    Shostachenko S, Porokhonko Y, Zakharchenko R, Burdykin M, Ryzhuk R, Kargin N, Kalinin B, Belov A, Vasiliev A 2017 J. Phys. Conf. Ser. 938 012072

    [16]

    van Daele B, van Tendeloo G, Ruythooren W, Derluyn J, Leys M, Germain M 2005 Appl. Phys. Lett. 87 061905Google Scholar

    [17]

    Landolt H, Börnstein R, Predel B 1991 Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys (Vol. 5) (Berlin: Springer) pp4–6

    [18]

    Gong R, Wang J, Liu S, Dong Z, Yu M, Wen C P, Cai Y, Zhang B 2010 Appl. Phys. Lett. 97 062115Google Scholar

    [19]

    Greco G, Iucolano F, Roccaforte F 2016 Appl. Surface Sci. 383 324Google Scholar

    [20]

    France R, Xu T, Chen P, Chandrasekaran R, Moustakas T 2007 Appl. Phys. Lett. 90 062115Google Scholar

    [21]

    Park J S, Han J, Seong T Y 2015 J. Alloys Compd. 652 167Google Scholar

    [22]

    Zhao S, Gao J, Wang S, Xie H, Ponce F A, Goodnick S, Chowdhury S 2017 Jpn. J. Appl. Phys. 56 126502Google Scholar

    [23]

    Kurtin S, McGill T, Mead C 1969 Phys. Rev. Lett. 22 1433Google Scholar

    [24]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [25]

    Bass J 1982 Landolt-Börnstein-Group Ⅲ Condensed Matter (Berlin: Springer) pp5–13

    [26]

    Mohammad S N 2004 J. Appl. Phys. 95 7940Google Scholar

  • 图 1  目前最常应用于n型GaN欧姆接触的Ti基多层金属体系

    Fig. 1.  Ti-based multilayer metal system most commonly used in n-type GaN ohmic contact

    图 2  实验中用到的圆点型传输线模型(dot CTLM)结构

    Fig. 2.  The scheme of dot circular transmission line model (dot CTLM) in this experiment

    图 3  不同退火条件下Ti/Al, Hf/Al样品间距为10 μm的电极之间的I-V曲线

    Fig. 3.  I-V curve between Ti/Al, Hf/Al pads with 10 μm spacing anneales at different condition.

    图 4  Hf/Al电极样品深度剖析的AES图 (a)未退火; (b) 650 ℃退火60 s

    Fig. 4.  AES depth profiles of Hf/Al electrodes: (a) No annealing and (b) after annealing at 650 ℃ for 60 s in N2 ambient.

    图 5  各电极的截面SEM图像 (a) Hf/Al, 650 ℃; (b) Hf/Al, 850 ℃; (c) Ti/Al, 650 ℃; (d) Ti/Al, 850 ℃

    Fig. 5.  Cross-sectional SEM image of each electrode: (a) Hf/Al, 650 ℃; (b) Hf/Al, 850 ℃; (c) Ti/Al, 650 ℃; (d) Ti/Al, 850 ℃

    图 6  各电极在850 ℃条件下退火的表面SEM图 (a) Hf/Al; (b) Ti/Al

    Fig. 6.  SEM image of each electrode annealed at 850 ℃ condition: (a) Hf/Al; (b) Ti/Al

    表 1  不同金属的功函数、熔点、电阻率 (273 K)

    Table 1.  Work function, melting point and resi-stivity of different metals.

    金属功函数/eV[24]熔点/K[17]电阻率/Ω·cm2 (273 K)[25]
    Ti4.3319434.2×10–6
    Al4.24933.602.4×10–6
    Ni5.3517286.24×10–6
    Au5.311337.582.03×10–6
    Zr4.0521283.86×10–6
    Hf3.9425043.27×10–6
    下载: 导出CSV

    表 2  各电极样品在不同退火条件下的比接触电阻率

    Table 2.  Specific contact resistivity of each electrode sample at different annealing conditions.

    样品名称退火条件 (N2)比接触电阻率/Ω·cm2
    Hf/Alno annealing1.21×10–4
    Hf/Al650 ℃ 60 s4.28×10–5
    Hf/Al850 ℃ 30 s1.13×10–4
    Ti/Al650 ℃ 60 s5.85×10–5
    Ti/Al850 ℃ 30 s1.27×10–4
    下载: 导出CSV
  • [1]

    Strite S, Morka Strite S, Morkoç H 1992 J. Vac. Sci. Technol. B: Microelectron Process Phenom 10 1237Google Scholar

    [2]

    Davydov V Y, Klochikhin A, Emtsev V V, Kurdyukov D, Ivanov S, Vekshin V, Bechstedt F, Furthmüller J, Aderhold J, Graul J 2002 Phys. Status Solidi B 234 787Google Scholar

    [3]

    Pearton S, Ren F, Zhang A, Lee K 2000 Mater. Sci. Eng. R. Rep. 30 55Google Scholar

    [4]

    Munoz E, Monroy E, Pau J, Calle F, Omnes F, Gibart P 2001 J. Phys. Condens. Matter 13 7115Google Scholar

    [5]

    Deger C, Born E, Angerer H, Ambacher O, Stutzmann M, Hornsteiner J, Riha E, Fischerauer G 1998 Appl. Phys. Lett. 72 2400Google Scholar

    [6]

    Huang Z, Goldberg R, Chen J, Zheng Y, Mott D B, Shu P 1995 Appl. Phys. Lett. 67 2825Google Scholar

    [7]

    Pimputkar S, Speck J S, DenBaars S P, Nakamura S 2009 Nat. Photonics 3 180Google Scholar

    [8]

    Ruvimov S, Liliental Z, Washburn J, Duxstad K, Haller E, Fan Z F, Mohammad S N, Kim W, Botchkarev A, Morkoc H 1996 Appl. Phys. Lett. 69 1556Google Scholar

    [9]

    Wang D F, Shiwei F, Lu C, Motayed A, Jah M, Mohammad S N, Jones K A, Salamanca-Riba L 2001 J. Appl. Phys. 89 6214Google Scholar

    [10]

    Selvanathan D, Zhou L, Kumar V, Adesida I 2002 Phys. Status Solidi B (a) 194 583Google Scholar

    [11]

    Iucolano F, Roccaforte F, Alberti A, Bongiorno C, Di Franco S, Raineri V 2006 J. Appl. Phys. 100 123706Google Scholar

    [12]

    Zhang T, Pu T, Xie T, Li L, Bu Y, Wang X, Ao J P 2018 Chin. Phys. B 27 078503Google Scholar

    [13]

    Yao J N, Lin Y C, Chuang Y L, Huang Y X, Shih W C, Sze S M, Chang E Y 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (Hsinchu) p419

    [14]

    Singh K, Chauhan A, Mathew M, Punia R, Meena S S, Gupta N, Kundu R S 2019 Appl. Phys. A 125 24

    [15]

    Shostachenko S, Porokhonko Y, Zakharchenko R, Burdykin M, Ryzhuk R, Kargin N, Kalinin B, Belov A, Vasiliev A 2017 J. Phys. Conf. Ser. 938 012072

    [16]

    van Daele B, van Tendeloo G, Ruythooren W, Derluyn J, Leys M, Germain M 2005 Appl. Phys. Lett. 87 061905Google Scholar

    [17]

    Landolt H, Börnstein R, Predel B 1991 Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys (Vol. 5) (Berlin: Springer) pp4–6

    [18]

    Gong R, Wang J, Liu S, Dong Z, Yu M, Wen C P, Cai Y, Zhang B 2010 Appl. Phys. Lett. 97 062115Google Scholar

    [19]

    Greco G, Iucolano F, Roccaforte F 2016 Appl. Surface Sci. 383 324Google Scholar

    [20]

    France R, Xu T, Chen P, Chandrasekaran R, Moustakas T 2007 Appl. Phys. Lett. 90 062115Google Scholar

    [21]

    Park J S, Han J, Seong T Y 2015 J. Alloys Compd. 652 167Google Scholar

    [22]

    Zhao S, Gao J, Wang S, Xie H, Ponce F A, Goodnick S, Chowdhury S 2017 Jpn. J. Appl. Phys. 56 126502Google Scholar

    [23]

    Kurtin S, McGill T, Mead C 1969 Phys. Rev. Lett. 22 1433Google Scholar

    [24]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [25]

    Bass J 1982 Landolt-Börnstein-Group Ⅲ Condensed Matter (Berlin: Springer) pp5–13

    [26]

    Mohammad S N 2004 J. Appl. Phys. 95 7940Google Scholar

  • [1] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [2] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] 刘伟, 平云霞, 杨俊, 薛忠营, 魏星, 武爱民, 俞文杰, 张波. 微波退火和快速热退火下钛调制镍与锗锡反应. 物理学报, 2021, 70(11): 116801. doi: 10.7498/aps.70.20202118
    [4] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [5] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [6] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [7] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [8] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [9] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [10] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [11] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [12] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [13] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [14] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [15] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [16] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [17] 汪 莱, 张贤鹏, 席光义, 赵 维, 李洪涛, 江 洋, 韩彦军, 罗 毅. MOVPE低温生长的n型GaN电学特性研究. 物理学报, 2008, 57(9): 5923-5927. doi: 10.7498/aps.57.5923
    [18] 丁志博, 王 坤, 陈田祥, 陈 迪, 姚淑德. 氧气氛中p-GaN/Ni/Au电极在相同温度不同合金时间下的欧姆接触形成机制和扩散行为. 物理学报, 2008, 57(4): 2445-2449. doi: 10.7498/aps.57.2445
    [19] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响. 物理学报, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  10401
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 修回日期:  2019-08-15
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回