搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离激元耦合体系及其光谱增强应用

朱旭鹏 石惠民 张轼 陈智全 郑梦洁 王雅思 薛书文 张军 段辉高

引用本文:
Citation:

表面等离激元耦合体系及其光谱增强应用

朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高

Review on surface plasmonic coupling systems and their applications in spectra enhancement

Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao
PDF
HTML
导出引用
  • 当入射电磁波频率与金属微纳米结构中自由电子的集体振荡频率相当时, 金属微纳米结构中激发表面等离激元共振, 其共振电磁场被强束缚在亚波长尺度以下界面附近, 使其具备极大的电磁场局域能力. 这一效应可以极大程度地增强电磁波与物质的相互作用, 在金属表面等离激元耦合体系中尤为明显. 本文简述了表面等离激元耦合效应、模式耦合理论以及对应的结构耦合体系. 另外, 还介绍了一类典型耦合体系在光谱增强中的重要应用, 主要包括增强折射率传感、表面增强红外吸收、表面增强拉曼散射、表面增强光学非线性效应等.
    Surface plasmon polariton is a surface oscillation wave that is bound at the interface between metal and dielectric material. Its oscillating electric field is strongly bound below the subwavelength scale near the interface, generating a huge enhancement of localized electromagnetic field, which can be used to greatly enhance the interaction between light and matter, particularly in metal surface plasmon coupling system. In this paper, we review the coupling effects, coupling theory, and typical coupling structures of the surface plasmon coupling systems. We also introduce a typical surface plasmon coupling system and its corresponding crucial applications in surface enhanced refractive index sensor, Raman scattering, near-infrared absorption, and nonlinear effect generation.
      通信作者: 朱旭鹏, zhuxp18@lingnan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574078, 61674073)、湖南省自然科学基金(批准号: 2015JJ1008, 2015RS4024)、广东省科技计划(批准号: 2017A050506056)、广东省重点基础与应用研究项目(批准号: 2016KZDXM021)、大学物理教学团队(批准号: 114961700249)和岭南师范学院自然基金(批准号: ZL1937)资助的课题.
      Corresponding author: Zhu Xu-Peng, zhuxp18@lingnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574078, 61674073), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ1008, 2015RS4024), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2017A050506056), the Key Basic and Applied Research Project of Guangdong Province, China (Grant No. 2016KZDXM021), the College Physics Teaching Team, China (Grant No. 114961700249), and the Foundation of Lingnan Normal University, China (Grant No. ZL1937).
    [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp5−101

    [2]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [3]

    童廉明, 徐红星 2012 物理 41 582Google Scholar

    Tong L, Xu H 2012 Physics 41 582Google Scholar

    [4]

    Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) pp287−428

    [5]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409Google Scholar

    [6]

    Kreibig U, Vollmer M 2013 Optical Properties of Metal Clusters (New York: Springer Science & Business Media) pp14−193

    [7]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [8]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [9]

    孙雪菲, 王鹿霞 2014 物理学报 63 097301

    Sun X F, Wang L X 2014 Acta Phys. Sin. 63 097301

    [10]

    Oulton R F, Sorger V J, Zentgraf T, Ma R-M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [11]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [12]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [13]

    Lee K S, El-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [14]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [15]

    Tabor C, van Haute D, El-Sayed M A 2009 ACS Nano 3 3670Google Scholar

    [16]

    邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805Google Scholar

    Zou W, Zhou J, Jin L, Zhang H 2012 Acta Phys. Sin. 61 097805Google Scholar

    [17]

    Hu H, Duan H, Yang J K W, Shen Z X 2012 ACS Nano 6 10147Google Scholar

    [18]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [19]

    Liao H B, Xiao R F, Wang H, Wong K S, Wong G K L 1998 Appl. Phys. Lett. 72 1817Google Scholar

    [20]

    Sato R, Henzie J, Rong H, Naito M, Takeda Y 2019 Opt. Express 27 19618

    [21]

    Ricard D, Roussignol P, Flytzanis C 1985 Opt. Lett. 10 511Google Scholar

    [22]

    Zhang S, Li G C, Chen Y, Zhu X, Liu S D, Lei D Y, Duan H 2016 ACS Nano 10 11105Google Scholar

    [23]

    Martín-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114Google Scholar

    [24]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [25]

    Lin D Z, Cheng T D, Chang C K, Yeh J T, Liu J M, Yeh C S, Lee C K 2007 Opt. Express 15 2585Google Scholar

    [26]

    Shelby R A, Smith D R, Nemat-Nasser S C, Schultz S 2001 Appl. Phys. Lett. 78 489Google Scholar

    [27]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [28]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [29]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205Google Scholar

    [30]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [31]

    Ozbay E 2006 Science 311 189Google Scholar

    [32]

    Song J, Yang X, Jacobson O, Huang P, Sun X, Lin L, Yan X, Niu G, Ma Q, Chen X 2015 Adv. Mater. 27 4910Google Scholar

    [33]

    Song J, Huang P, Duan H, Chen X 2015 Accounts Chem. Res. 48 2506Google Scholar

    [34]

    Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911Google Scholar

    [35]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [36]

    王振林 2009 物理学进展 29 287Google Scholar

    Wang Z L 2009 Progress in Physics 29 287Google Scholar

    [37]

    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P, Liu N 2010 Nano Lett. 10 2721Google Scholar

    [38]

    Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153Google Scholar

    [39]

    Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243

    [40]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar

    [41]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [42]

    Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J 1996 Nature 382 607Google Scholar

    [43]

    Dusemund B, Hoffmann A, Salzmann T, Kreibig U, Schmid G 1991 Zeitschrift für Physik D: Atoms, Molecules and Clusters 20 305Google Scholar

    [44]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1Google Scholar

    [45]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [46]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [47]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [48]

    Michaels A M, Nirmal M, Brus L E 1999 J. Am. Chem. Soc. 121 9932Google Scholar

    [49]

    Michaels A M, Jiang, Brus L 2000 J. Phys. Chem. B 104 11965

    [50]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [51]

    Grésillon S, Aigouy L, Boccara A C, Rivoal J C, Quelin X, Desmarest C, Gadenne P, Shubin V A, Sarychev A K, Shalaev V M 1999 Phys. Rev. Lett. 82 4520Google Scholar

    [52]

    Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W, Lane S M, Huser T R, Nordlander P, Halas N J 2005 Nano Lett. 5 1569Google Scholar

    [53]

    Huang J S, Kern J, Geisler P, Weinmann P, Kamp M, Forchel A, Biagioni P, Hecht B 2010 Nano Lett. 10 2105Google Scholar

    [54]

    Lee S Y, Hung L, Lang G S, Cornett J E, Mayergoyz I D, Rabin O 2010 ACS Nano 4 5763Google Scholar

    [55]

    Maher R C, Maier S A, Cohen L F, Koh L, Laromaine A, Dick J A G, Stevens M M 2010 J. Phys. Chem. C 114 7231

    [56]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [57]

    Noguez C 2007 J. Phys. Chem. C 111 3806

    [58]

    Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504Google Scholar

    [59]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752

    [60]

    Fang Z, Cai J, Yan Z, Nordlander P, Halas N J, Zhu X 2011 Nano Lett. 11 4475Google Scholar

    [61]

    Funston A M, Novo C, Davis T J, Mulvaney P 2009 Nano Lett. 9 1651Google Scholar

    [62]

    Jain P K, El-Sayed M A 2007 Nano Lett. 7 2854Google Scholar

    [63]

    Jain P K, El-Sayed M A 2008 J. Phys. Chem. C 112 4954

    [64]

    Pan D, Yu R, Xu H, García de Abajo F J 2017 Nat. Commun. 8 1243Google Scholar

    [65]

    Yi Z, Chen J, Cen C, Chen X, Zhou Z, Tang Y, Ye X, Xiao S, Luo W, Wu P 2019 Micromachines 10 194Google Scholar

    [66]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [67]

    Yi Z, Liu L, Wang L, Cen C, Chen X, Zhou Z, Ye X, Yi Y, Tang Y, Yi Y, Wu P 2019 Results in Physics 13 102217Google Scholar

    [68]

    Sun S, Zhou Z, Zhang C, Gao Y, Duan Z, Xiao S, Song Q 2017 ACS Nano 11 4445Google Scholar

    [69]

    Yan J, Liu P, Lin Z, Wang H, Chen H, Wang C, Yang G 2015 ACS Nano 9 2968Google Scholar

    [70]

    Park T H, Nordlander P 2009 Chem. Phys. Lett. 472 228Google Scholar

    [71]

    Hao F, Nehl C L, Hafner J H, Nordlander P 2007 Nano Lett. 7 729Google Scholar

    [72]

    Wang H, Brandl D W, Nordlander P, Halas N J 2007 Accounts Chem. Res. 40 53Google Scholar

    [73]

    Seok T J, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck P J, Cabrini S, Schwartzberg A M, Bokor J, Yablonovitch E, Wu M C 2011 Nano Lett. 11 2606Google Scholar

    [74]

    Chu Y, Banaee M G, Crozier K B 2010 ACS Nano 4 2804Google Scholar

    [75]

    Chu Y, Crozier K B 2009 Opt. Lett. 34 244Google Scholar

    [76]

    Wang D, Zhu W, Best M D, Camden J P, Crozier K B 2013 Nano Lett. 13 2194Google Scholar

    [77]

    Sheikholeslami S, Jun Y W, Jain P K, Alivisatos A P 2010 Nano Lett. 10 2655Google Scholar

    [78]

    Wang H, Liu P, Ke Y, Su Y, Zhang L, Xu N, Deng S, Chen H 2015 ACS Nano 9 436Google Scholar

    [79]

    Duan H, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683Google Scholar

    [80]

    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Moshchalkov V V, van Dorpe P, Nordlander P, Maier S A 2010 ACS Nano 4 1664Google Scholar

    [81]

    Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X 2009 Phys. Status Solidi B 246 1397

    [82]

    Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X 2011 Nano Lett. 11 893Google Scholar

    [83]

    Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J, Xu H 2010 Nano Lett. 10 1950Google Scholar

    [84]

    Sheikholeslami S N, García-Etxarri A, Dionne J A 2011 Nano Lett. 11 3927Google Scholar

    [85]

    Rahmani M, Lukiyanchuk B, Nguyen T T V, Tahmasebi T, Lin Y, Liew T Y F, Hong M H 2011 Opt. Mater. Express 1 1409Google Scholar

    [86]

    Yin T, Dong Z, Jiang L, Zhang L, Hu H, Qiu C W, Yang J K W, Shen Z X 2016 ACS Photonics 3 979Google Scholar

    [87]

    Lovera A, Gallinet B, Nordlander P, Martin O J F 2013 ACS Nano 7 4527Google Scholar

    [88]

    Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P, Halas N J 2010 Nano Lett. 10 3184Google Scholar

    [89]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229Google Scholar

    [90]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707Google Scholar

    [91]

    Yi J M, Smirnov V, Piao X, Hong J, Kollmann H, Silies M, Wang W, Groß P, Vogelgesang R, Park N, Lienau C 2016 ACS Nano 10 475Google Scholar

    [92]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar

    [93]

    Cetin A E, Altug H 2012 ACS Nano 6 9989Google Scholar

    [94]

    Singh R, Al-Naib I A I, Yang Y, Chowdhury D R, Cao W, Rockstuhl C, Ozaki T, Morandotti R, Zhang W 2011 Appl. Phys. Lett. 99 201107Google Scholar

    [95]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [96]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [97]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188Google Scholar

    [98]

    Tsai C Y, Lu S P, Lin J W, Lee P T 2011 Appl. Phys. Lett. 98 153108Google Scholar

    [99]

    Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 485Google Scholar

    [100]

    Verellen N, van Dorpe P, Huang C, Lodewijks K, Vandenbosch G A E, Lagae L, Moshchalkov V V 2011 Nano Lett. 11 391Google Scholar

    [101]

    Sherry L J, Chang S H, Schatz G C, van Duyne R P, Wiley B J, Xia Y 2005 Nano Lett. 5 2034Google Scholar

    [102]

    Park H R, Chen X, Nguyen N C, Peraire J, Oh S H 2015 ACS Photonics 2 417Google Scholar

    [103]

    Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P, Halas N J 2012 Nano Lett. 12 1660Google Scholar

    [104]

    Wang X, Zhu X, Chen Y, Zheng M, Xiang Q, Tang Z, Zhang G, Duan H 2017 ACS Appl. Mater. Interfaces 9 31102Google Scholar

    [105]

    Yang L, Li P, Liu H, Tang X, Liu J 2015 Chem. Soc. Rev. 44 2837Google Scholar

    [106]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391Google Scholar

    [107]

    Panneerselvam R, Liu G K, Wang Y H, Liu J Y, Ding S Y, Li J F, Wu D Y, Tian Z Q 2018 Chem. Commun. 54 10Google Scholar

    [108]

    Chen X, Wang C, Yao Y, Wang C 2017 ACS Nano 11 8034Google Scholar

    [109]

    Brown L V, Yang X, Zhao K, Zheng B Y, Nordlander P, Halas N J 2015 Nano Lett. 15 1272Google Scholar

    [110]

    Cerjan B, Yang X, Nordlander P, Halas N J 2016 ACS Photonics 3 354Google Scholar

    [111]

    Neubrech F, Huck C, Weber K, Pucci A, Giessen H 2017 Chem. Rev. 117 5110Google Scholar

    [112]

    Bernasconi G D, Butet J, Martin O J F 2018 ACS Photonics 5 3246Google Scholar

    [113]

    Bautista G, Dreser C, Zang X, Kern D P, Kauranen M, Fleischer M 2018 Nano Lett. 18 2571Google Scholar

    [114]

    Blechman Y, Almeida E, Sain B, Prior Y 2019 Nano Lett. 19 261Google Scholar

    [115]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [116]

    Huang D, Byers C P, Wang L Y, Hoggard A, Hoener B, Dominguez-Medina S, Chen S, Chang W S, Landes C F, Link S 2015 ACS Nano 9 7072Google Scholar

    [117]

    Li G C, Zhang Y L, Jiang J, Luo Y, Lei D Y 2017 ACS Nano 11 3067Google Scholar

    [118]

    Flauraud V, Regmi R, Winkler P M, Alexander D T L, Rigneault H, van Hulst N F, García-Parajo M F, Wenger J, Brugger J 2017 Nano Lett. 17 1703Google Scholar

    [119]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [120]

    Wang Z, Dong Z, Gu Y, Chang Y H, Zhang L, Li L J, Zhao W, Eda G, Zhang W, Grinblat G, Maier S A, Yang J K W, Qiu C W, Wee A T S 2016 Nat. Commun. 7 11283Google Scholar

    [121]

    Bauch M, Toma K, Toma M, Zhang Q, Dostalek J 2014 Plasmonics 9 781Google Scholar

    [122]

    Li J F, Li C Y, Aroca R F 2017 Chem. Soc. Rev. 46 3962Google Scholar

    [123]

    Park J E, Kim J, Nam J M 2017 Chem. Sci. 8 4696Google Scholar

  • 图 1  (a)金属微纳米颗粒团聚过程[42]; (b)不同团聚程度下的胶体颜色[42]; (c)不同团聚程度胶体的消光光谱[43]

    Fig. 1.  (a) The schematic diagram of agglomeration process when DNA molecules are added to noble metal micro-nanoparticle suspensions[42]; (b) the color map of metal nanoparticles with different degree of agglomeration[42]; (c) the extinction spectra of metal nanoparticles with different degree of agglomeration[43].

    图 2  (a)银纳米粒子的原子力显微成像; (b)暗场散射成像; (c)表面增强拉曼散射谱及相应的暗场散射谱[48]

    Fig. 2.  (a) The AFM image of Ag nanoparticles; (b) the dark scattering image of Ag nanoparticles; (c) the spectra of surface enhanced Raman scattering (left) and the corresponding dark scattering spectra (right). Note that the colloidal micro-nanoparticles produce a strong surface-enhanced Raman scattering with a complex scattering spectrum with multiple redshift peaks [48].

    图 3  (a)表面增强拉曼的金纳米颗粒热点; (b)纳米粒子的原子力显微成像; (c)纳米粒子二聚体的近场分布[52]

    Fig. 3.  (a) The hotspots image of gold nanoparticles enhanced Raman scattering signal; (b) the corresponding AFM image of (a); (c) the near-field distribution when two adjacent nanoparticles are close to each other[52].

    图 4  (a)谐振子模型[56]; (b) LC等效电路模型[58]; (c)模式杂化模型[41]; (d)不同排布二聚体的模式杂化图[39]

    Fig. 4.  (a) The coupling theory model of simple harmonic oscillator[56]; (b) the LC equivalent circuit model of the surface plasmon resonance[58]; (c) the hybrid model of surface plasmon resonance[41]; (d) the schematic diagram of intrinsic plasmon coupling in nanorod dimer[39].

    图 5  (a)单层纳米薄膜[70]; (b)单个纳米星结构[71]; (c)单个金属纳米盘及劈裂盘[60]; (d)单个金属纳米球壳[72]

    Fig. 5.  (a) The surface plasmon coupling modes and the corresponding dispersion curves in single-layer metal nanofilm[70]; (b) the metal nanostar structure and the corresponding mode coupling process[71]; (c) the SEM images of single metal disk and split disk with their corresponding extinction spectra[60]; (d) the SEM images of single metal symmetric and asymmetric nanoshells with their corresponding absorption spectra during the asymmetric evolution process[72].

    图 6  (a)三种不同厚度金属薄膜上的纳米颗粒[72]; (b)适当距离的金属反射面上的纳米天线[73]; (c), (d)适当距离的金属薄膜上的纳米盘[74,75]; (e)适当距离的金属薄膜上环内纳米颗粒二聚体[76]

    Fig. 6.  (a) The coupling model of three metal nano-films between the nanoparticles on film, and their corresponding absorption spectra[72]; (b) the schematic diagram of nano-antenna radiation engineering on metal surface, its corresponding electric field distribution and sample’s SEM image[73]; (c) the schematic diagram of nanodisk array on metal film and its corresponding SEM image[74]; (d) the schematic diagram of metal structures on metal surface, the corresponding SEM image and the coupled electric field intensity at different wavelength[75]; (e) the schematic diagram of the dimer structure in the ring on the metal surface, the corresponding SEM image and the local electric field distribution at resonance peak position[76].

    图 7  (a)不对称纳米颗粒二聚体[77]; (b)金属-介质纳米球二聚体[78]; (c)不同特征的蝴蝶结结构[79]; (d)同轴盘-环二聚体[80]; (e)纵向劈裂环二聚体[81]; (f) 不对称半环二聚体[82]; (g)耦合的纳米线二聚体[83]; (h) 纳米球三聚体[84]; (i) 中心球偏离的纳米球五聚体[85]; (j) dolmen结构[86]; (k)纳米棒四聚体[87]; (l)不同参数的纳米盘七聚体[88]

    Fig. 7.  (a) Asymmetric nanoparticles dimer[77]; (b) coupled heterogeneous nanoparticles[78]; (c) symmetrical bowties[79]; (d) concentric nanodisk-nanoring resonator[80]; (e) split nanoring pair[81]; (f) asymmetrical half-ring structure pair[82]; (g) coupled nanowires[83]; (h) nanotrimers[84]; (i) asymmetrical nanopentamer[85]; (j) dolmen structure[86]; (k) nanorod tetramer[87]; (l) nanodisk heptamers[88]

    图 8  (a) 纳米银棒链[89]; (b) 一维金属光栅结构[90]; (c) 环状光栅[91]; (d) 不对称“H”孔阵列[92]; (e) 异心纳米盘-环谐振腔阵列[93]; (f) THz波不对称U型环对阵列[94]; (g) 层状负折射率结构[95]; (h) 异质不对称“H”结构阵列[96]

    Fig. 8.  (a) The SEM image and extinction spectrum of single silver nanorod chain[89]; (b) the schematic diagram of metal one-dimensional grating structure and its corresponding transmission spectrum at TM polarization[90]; (c) the SEM image of annular groove grating array[91]; (d) the asymmetric compensation structures array, and the illustration is a single magnified view[92]; (e) the SEM image of nanodisk-ring asymmetric resonator array on a conductive substrate[93]; (f) the optical images of asymmetric U-shaped ring structure pairs array in terahertz region[94]; (g) the layered hole array structures with a negative refractive index[95]; (h) the heterogeneous asymmetric “H” array structures[96].

    图 9  衬底折射率对表面等离激元模式的影响 (a)纳米球壳[97]; (b)纳米立方体[28]

    Fig. 9.  The effect of dielectric substrate on the energy of plasmon oscillation mode of nearby metal nanostructures: (a) Nanoshell[97]; (b) nanocube[28].

    图 10  (a)周期性纳米圆环阵列在不同折射率下的消光光谱和峰位变化[98]; (b)金属纳米结构在不同折射率溶液中的暗场散射图[99]; (c)金属XI结构的扫描电镜图、共振位置的电荷分布、不同环境中的消光谱[100]; (d)太赫兹圆环缝隙阵列, 可以灵敏检测其上纳米级薄膜厚度的增加[102]

    Fig. 10.  (a) The extinction spectra and peak position changes of periodic nano-ring arrays at different refractive index [98]; (b) the dark field scatter plot of single metal nanostructures in different refractive index solutions[99]; (c) the SEM image of metal XI-shape structure, the new mode charge distribution formed by original mode strong coupling, and the extinction spectrum in different refractive index materials, the sensitivity of refractive index sensing can reach 1000 nm/RIU[100]; (d) the terahertz ring-gap array for sensitive detection of the increase in nanoscale thickness of films[102].

    图 11  (a)不同参数的金属纳米七聚体扫描电子显微图、散射光谱、表面增强拉曼谱及近场分布[103]; (b)金膜面上半球形结构, 在结构间隙之间可以产生极大的电磁热点, 可以实现低浓度农药分子的灵敏检测[104]; (c)动态表面增强拉曼散射检测构想, 可以解决干法检测及湿法检测灵敏性和重复性不能兼顾的难题[105]; (d)表面增强拉曼散射探针的重要应用[106]; (e)表面等离激元增强拉曼散射技术目前所处的现状, 瓶颈以及未来需要发展的方向[107]

    Fig. 11.  (a) The SEM images of the metal nano-heptamers with different sizes, the corresponding scattering spectra, the surface enhanced Raman signal spectra and the electric field distribution[103], the experimental results show that the strongest Raman signal can be obtained only when the coupling peak position of the heptamer is near to the peak position of the Raman shift; (b) the hemispherical structure on the gold film surface can generate a huge electromagnetic hot spot between the structure gaps, which can achieve sensitive detection of low concentration pesticide molecules[104]; (c) the concept of dynamic surface-enhanced Raman scattering detection can solve the problem that the sensitivity and repeatability beyond the dry detection and wet detection[105]; (d) the important applications of surface enhanced Raman scattering probes[106]; (e) the bottlenecks and future directions surface-enhanced Raman spectroscopy[107].

    图 12  (a)具有挂壁颗粒的垂直耦合互补天线及其在不同偏振下的电场分布和在不同间隙大小下的十八烷的手性强度[108]; (b)金属反射面上扇形天线结构对及其不同波长下的近红外吸收增强因子[109]; (c)不对称铝十字结构应用于红外吸收增强中的过程示意图[110]; (d)金属共振天线应用于红外吸收增强中的过程示意图[111]

    Fig. 12.  (a) Vertically coupled complementary antenna with wall particles, the corresponding electric field distribution under different polarizations and the comparisons of ODT fingerprint intensity at different gap sizes[108]; (b) the near-infrared absorption enhancement factor of t the fan-shaped antenna with or without the reflective metal layer, when there is a reflective metal substrate, the enhancement factor can reach 105 orders of magnitude[109]; (c) the schematic diagram of applied asymmetric aluminum cross antennas to infrared absorption enhancemen[110]; (d) the schematic diagram of metal resonant antenna applied to infrared absorption enhancement[111].

    图 13  (a)飞秒脉冲驱动下, 银纳米棒的非线性响应示意图及其远场时间变化曲线[112]; (b)圆柱矢量光束激发下金属微纳米低聚物中的二次谐波产生[113]; (c)金劈裂盘在不同偏振下的散射光谱和二次谐波产生谱[22]; (d)金矩形纳米腔阵列对四波混频的优化过程示意图[114]; (e)用于增强非线性效应的金属纳米结构实例[115]

    Fig. 13.  (a) The nonlinear response diagram of silver nanorods and its far-field temporal dynamics caves driven by femtosecond pulses[112]; (b) second harmonic generation in metal micro-nano oligomers excited by cylindrical vector beam[113]; (c) the SEM image of the metal split nanodisk, the corresponding dark-field scattering spectrum under different incident polarizations, the corresponding dependence between the second harmonic generation field distribution with intrinsic wavelength[22]; (d) the schematic diagram of optimization process of four-wave mixing with gold rectangular nanocavity array[114]; (e) examples of metal nanostructures for enhancing nonlinear effects[115].

    图 14  (a)单颗粒及其二聚体的光致发光量子产率[116]; (b)介质及金属上二聚体的光致发光谱[117]; (c)金属面内二聚体天线用于荧光增强[118]; (d)银蝴蝶结纳米结构实现对MoS2荧光的增强[119]; (e) WSe2-金纳米间隙杂化结构的荧光增强图[120]; (f)表面等离激元局域场与荧光分子团的耦合示意图[121]; (g)表面等离激元增强荧光简图[122]; (h)用表面等离激元纳米结构控制和增强光致发光示意图[123]

    Fig. 14.  (a) Photoluminescence quantum yield of a single particle and the dimer, respectively[116]; (b) photoluminescence spectra of nanoparticle dimer on media and metal substrate, respectively[117]; (c) in-plane nanoantennas for fluorescence enhancement[118]; (d) the enhanced fluorescence of MoS2 by using silver bow nanostructures[119]; (e) the fluorescence enhancement of WSe2-gold plasmonic hybrid structure[120]; (f) the schematic of a fluorophore coupled with the confined field of SPP and LSP modes, respectively[121]; (g) cartoon of simplified plasmon enhanced fluorescence[122]; (h) schematic illustration of controlling and enhancing PL with plasmonic nanostructures[123].

  • [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp5−101

    [2]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [3]

    童廉明, 徐红星 2012 物理 41 582Google Scholar

    Tong L, Xu H 2012 Physics 41 582Google Scholar

    [4]

    Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) pp287−428

    [5]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409Google Scholar

    [6]

    Kreibig U, Vollmer M 2013 Optical Properties of Metal Clusters (New York: Springer Science & Business Media) pp14−193

    [7]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [8]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [9]

    孙雪菲, 王鹿霞 2014 物理学报 63 097301

    Sun X F, Wang L X 2014 Acta Phys. Sin. 63 097301

    [10]

    Oulton R F, Sorger V J, Zentgraf T, Ma R-M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [11]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [12]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [13]

    Lee K S, El-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [14]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [15]

    Tabor C, van Haute D, El-Sayed M A 2009 ACS Nano 3 3670Google Scholar

    [16]

    邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805Google Scholar

    Zou W, Zhou J, Jin L, Zhang H 2012 Acta Phys. Sin. 61 097805Google Scholar

    [17]

    Hu H, Duan H, Yang J K W, Shen Z X 2012 ACS Nano 6 10147Google Scholar

    [18]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [19]

    Liao H B, Xiao R F, Wang H, Wong K S, Wong G K L 1998 Appl. Phys. Lett. 72 1817Google Scholar

    [20]

    Sato R, Henzie J, Rong H, Naito M, Takeda Y 2019 Opt. Express 27 19618

    [21]

    Ricard D, Roussignol P, Flytzanis C 1985 Opt. Lett. 10 511Google Scholar

    [22]

    Zhang S, Li G C, Chen Y, Zhu X, Liu S D, Lei D Y, Duan H 2016 ACS Nano 10 11105Google Scholar

    [23]

    Martín-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114Google Scholar

    [24]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [25]

    Lin D Z, Cheng T D, Chang C K, Yeh J T, Liu J M, Yeh C S, Lee C K 2007 Opt. Express 15 2585Google Scholar

    [26]

    Shelby R A, Smith D R, Nemat-Nasser S C, Schultz S 2001 Appl. Phys. Lett. 78 489Google Scholar

    [27]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [28]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [29]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205Google Scholar

    [30]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [31]

    Ozbay E 2006 Science 311 189Google Scholar

    [32]

    Song J, Yang X, Jacobson O, Huang P, Sun X, Lin L, Yan X, Niu G, Ma Q, Chen X 2015 Adv. Mater. 27 4910Google Scholar

    [33]

    Song J, Huang P, Duan H, Chen X 2015 Accounts Chem. Res. 48 2506Google Scholar

    [34]

    Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911Google Scholar

    [35]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [36]

    王振林 2009 物理学进展 29 287Google Scholar

    Wang Z L 2009 Progress in Physics 29 287Google Scholar

    [37]

    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P, Liu N 2010 Nano Lett. 10 2721Google Scholar

    [38]

    Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153Google Scholar

    [39]

    Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243

    [40]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar

    [41]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [42]

    Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J 1996 Nature 382 607Google Scholar

    [43]

    Dusemund B, Hoffmann A, Salzmann T, Kreibig U, Schmid G 1991 Zeitschrift für Physik D: Atoms, Molecules and Clusters 20 305Google Scholar

    [44]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1Google Scholar

    [45]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [46]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [47]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [48]

    Michaels A M, Nirmal M, Brus L E 1999 J. Am. Chem. Soc. 121 9932Google Scholar

    [49]

    Michaels A M, Jiang, Brus L 2000 J. Phys. Chem. B 104 11965

    [50]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [51]

    Grésillon S, Aigouy L, Boccara A C, Rivoal J C, Quelin X, Desmarest C, Gadenne P, Shubin V A, Sarychev A K, Shalaev V M 1999 Phys. Rev. Lett. 82 4520Google Scholar

    [52]

    Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W, Lane S M, Huser T R, Nordlander P, Halas N J 2005 Nano Lett. 5 1569Google Scholar

    [53]

    Huang J S, Kern J, Geisler P, Weinmann P, Kamp M, Forchel A, Biagioni P, Hecht B 2010 Nano Lett. 10 2105Google Scholar

    [54]

    Lee S Y, Hung L, Lang G S, Cornett J E, Mayergoyz I D, Rabin O 2010 ACS Nano 4 5763Google Scholar

    [55]

    Maher R C, Maier S A, Cohen L F, Koh L, Laromaine A, Dick J A G, Stevens M M 2010 J. Phys. Chem. C 114 7231

    [56]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [57]

    Noguez C 2007 J. Phys. Chem. C 111 3806

    [58]

    Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504Google Scholar

    [59]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752

    [60]

    Fang Z, Cai J, Yan Z, Nordlander P, Halas N J, Zhu X 2011 Nano Lett. 11 4475Google Scholar

    [61]

    Funston A M, Novo C, Davis T J, Mulvaney P 2009 Nano Lett. 9 1651Google Scholar

    [62]

    Jain P K, El-Sayed M A 2007 Nano Lett. 7 2854Google Scholar

    [63]

    Jain P K, El-Sayed M A 2008 J. Phys. Chem. C 112 4954

    [64]

    Pan D, Yu R, Xu H, García de Abajo F J 2017 Nat. Commun. 8 1243Google Scholar

    [65]

    Yi Z, Chen J, Cen C, Chen X, Zhou Z, Tang Y, Ye X, Xiao S, Luo W, Wu P 2019 Micromachines 10 194Google Scholar

    [66]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [67]

    Yi Z, Liu L, Wang L, Cen C, Chen X, Zhou Z, Ye X, Yi Y, Tang Y, Yi Y, Wu P 2019 Results in Physics 13 102217Google Scholar

    [68]

    Sun S, Zhou Z, Zhang C, Gao Y, Duan Z, Xiao S, Song Q 2017 ACS Nano 11 4445Google Scholar

    [69]

    Yan J, Liu P, Lin Z, Wang H, Chen H, Wang C, Yang G 2015 ACS Nano 9 2968Google Scholar

    [70]

    Park T H, Nordlander P 2009 Chem. Phys. Lett. 472 228Google Scholar

    [71]

    Hao F, Nehl C L, Hafner J H, Nordlander P 2007 Nano Lett. 7 729Google Scholar

    [72]

    Wang H, Brandl D W, Nordlander P, Halas N J 2007 Accounts Chem. Res. 40 53Google Scholar

    [73]

    Seok T J, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck P J, Cabrini S, Schwartzberg A M, Bokor J, Yablonovitch E, Wu M C 2011 Nano Lett. 11 2606Google Scholar

    [74]

    Chu Y, Banaee M G, Crozier K B 2010 ACS Nano 4 2804Google Scholar

    [75]

    Chu Y, Crozier K B 2009 Opt. Lett. 34 244Google Scholar

    [76]

    Wang D, Zhu W, Best M D, Camden J P, Crozier K B 2013 Nano Lett. 13 2194Google Scholar

    [77]

    Sheikholeslami S, Jun Y W, Jain P K, Alivisatos A P 2010 Nano Lett. 10 2655Google Scholar

    [78]

    Wang H, Liu P, Ke Y, Su Y, Zhang L, Xu N, Deng S, Chen H 2015 ACS Nano 9 436Google Scholar

    [79]

    Duan H, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683Google Scholar

    [80]

    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Moshchalkov V V, van Dorpe P, Nordlander P, Maier S A 2010 ACS Nano 4 1664Google Scholar

    [81]

    Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X 2009 Phys. Status Solidi B 246 1397

    [82]

    Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X 2011 Nano Lett. 11 893Google Scholar

    [83]

    Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J, Xu H 2010 Nano Lett. 10 1950Google Scholar

    [84]

    Sheikholeslami S N, García-Etxarri A, Dionne J A 2011 Nano Lett. 11 3927Google Scholar

    [85]

    Rahmani M, Lukiyanchuk B, Nguyen T T V, Tahmasebi T, Lin Y, Liew T Y F, Hong M H 2011 Opt. Mater. Express 1 1409Google Scholar

    [86]

    Yin T, Dong Z, Jiang L, Zhang L, Hu H, Qiu C W, Yang J K W, Shen Z X 2016 ACS Photonics 3 979Google Scholar

    [87]

    Lovera A, Gallinet B, Nordlander P, Martin O J F 2013 ACS Nano 7 4527Google Scholar

    [88]

    Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P, Halas N J 2010 Nano Lett. 10 3184Google Scholar

    [89]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229Google Scholar

    [90]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707Google Scholar

    [91]

    Yi J M, Smirnov V, Piao X, Hong J, Kollmann H, Silies M, Wang W, Groß P, Vogelgesang R, Park N, Lienau C 2016 ACS Nano 10 475Google Scholar

    [92]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar

    [93]

    Cetin A E, Altug H 2012 ACS Nano 6 9989Google Scholar

    [94]

    Singh R, Al-Naib I A I, Yang Y, Chowdhury D R, Cao W, Rockstuhl C, Ozaki T, Morandotti R, Zhang W 2011 Appl. Phys. Lett. 99 201107Google Scholar

    [95]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [96]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [97]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188Google Scholar

    [98]

    Tsai C Y, Lu S P, Lin J W, Lee P T 2011 Appl. Phys. Lett. 98 153108Google Scholar

    [99]

    Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 485Google Scholar

    [100]

    Verellen N, van Dorpe P, Huang C, Lodewijks K, Vandenbosch G A E, Lagae L, Moshchalkov V V 2011 Nano Lett. 11 391Google Scholar

    [101]

    Sherry L J, Chang S H, Schatz G C, van Duyne R P, Wiley B J, Xia Y 2005 Nano Lett. 5 2034Google Scholar

    [102]

    Park H R, Chen X, Nguyen N C, Peraire J, Oh S H 2015 ACS Photonics 2 417Google Scholar

    [103]

    Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P, Halas N J 2012 Nano Lett. 12 1660Google Scholar

    [104]

    Wang X, Zhu X, Chen Y, Zheng M, Xiang Q, Tang Z, Zhang G, Duan H 2017 ACS Appl. Mater. Interfaces 9 31102Google Scholar

    [105]

    Yang L, Li P, Liu H, Tang X, Liu J 2015 Chem. Soc. Rev. 44 2837Google Scholar

    [106]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391Google Scholar

    [107]

    Panneerselvam R, Liu G K, Wang Y H, Liu J Y, Ding S Y, Li J F, Wu D Y, Tian Z Q 2018 Chem. Commun. 54 10Google Scholar

    [108]

    Chen X, Wang C, Yao Y, Wang C 2017 ACS Nano 11 8034Google Scholar

    [109]

    Brown L V, Yang X, Zhao K, Zheng B Y, Nordlander P, Halas N J 2015 Nano Lett. 15 1272Google Scholar

    [110]

    Cerjan B, Yang X, Nordlander P, Halas N J 2016 ACS Photonics 3 354Google Scholar

    [111]

    Neubrech F, Huck C, Weber K, Pucci A, Giessen H 2017 Chem. Rev. 117 5110Google Scholar

    [112]

    Bernasconi G D, Butet J, Martin O J F 2018 ACS Photonics 5 3246Google Scholar

    [113]

    Bautista G, Dreser C, Zang X, Kern D P, Kauranen M, Fleischer M 2018 Nano Lett. 18 2571Google Scholar

    [114]

    Blechman Y, Almeida E, Sain B, Prior Y 2019 Nano Lett. 19 261Google Scholar

    [115]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [116]

    Huang D, Byers C P, Wang L Y, Hoggard A, Hoener B, Dominguez-Medina S, Chen S, Chang W S, Landes C F, Link S 2015 ACS Nano 9 7072Google Scholar

    [117]

    Li G C, Zhang Y L, Jiang J, Luo Y, Lei D Y 2017 ACS Nano 11 3067Google Scholar

    [118]

    Flauraud V, Regmi R, Winkler P M, Alexander D T L, Rigneault H, van Hulst N F, García-Parajo M F, Wenger J, Brugger J 2017 Nano Lett. 17 1703Google Scholar

    [119]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [120]

    Wang Z, Dong Z, Gu Y, Chang Y H, Zhang L, Li L J, Zhao W, Eda G, Zhang W, Grinblat G, Maier S A, Yang J K W, Qiu C W, Wee A T S 2016 Nat. Commun. 7 11283Google Scholar

    [121]

    Bauch M, Toma K, Toma M, Zhang Q, Dostalek J 2014 Plasmonics 9 781Google Scholar

    [122]

    Li J F, Li C Y, Aroca R F 2017 Chem. Soc. Rev. 46 3962Google Scholar

    [123]

    Park J E, Kim J, Nam J M 2017 Chem. Sci. 8 4696Google Scholar

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [3] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [4] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计. 物理学报, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [5] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [6] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [7] 朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高. 金属表面等离激元耦合理论研究进展. 物理学报, 2019, 68(24): 247301. doi: 10.7498/aps.68.20191369
    [8] 郑培超, 李晓娟, 王金梅, 郑爽, 赵怀冬. 再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析. 物理学报, 2019, 68(12): 125202. doi: 10.7498/aps.68.20190148
    [9] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [10] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [11] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [12] 刘欢, 曹士英, 于洋, 林百科, 方占军. 级联掺Yb增益光纤提高拍频信号信噪比的实验研究. 物理学报, 2017, 66(2): 024206. doi: 10.7498/aps.66.024206
    [13] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [14] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [15] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [16] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [17] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究. 物理学报, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [18] 徐刚, 谢平, 廖勇. X波段过模弯曲圆波导TM01-HE11模式变换器研究. 物理学报, 2013, 62(7): 078401. doi: 10.7498/aps.62.078401
    [19] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [20] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
计量
  • 文章访问数:  18796
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 修回日期:  2019-06-18
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回