搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶拓扑绝缘体和高阶拓扑超导体简介

严忠波

引用本文:
Citation:

高阶拓扑绝缘体和高阶拓扑超导体简介

严忠波

Higher-order topological insulators and superconductors

Yan Zhong-Bo
PDF
HTML
导出引用
  • 近期, 高阶拓扑绝缘体和高阶拓扑超导体的概念激发了广泛关注和研究兴趣. 由于新的体-边对应关系, 在同一维度高阶拓扑绝缘体和高阶拓扑超导体的边界态的维度要低于一阶(或称传统)拓扑绝缘体和拓扑超导体的边界态. 本文阐述了高阶拓扑物态和一阶拓扑物态的联系. 具体展示了在同一维度上如何利用对称性的破缺从一阶拓扑物态转变为高阶拓扑物态, 以及如何利用低维的一阶拓扑物态构造高维的高阶拓扑物态; 回顾了高阶拓扑绝缘体和高阶拓扑超导体的研究进展. 通过对近期的研究进展的回顾, 可以看出这一新兴领域虽然研究进展迅速, 但对电子型的高阶拓扑绝缘体和高阶拓扑超导体的性质的理论研究和实验研究均处在非常初级的阶段, 要对这一新兴领域有更深更全面的理解认识还有待更多的研究投入.
    Very recently, higher-order topological insulators and superconductors have attracted wide attention and aroused the great interest of researchers. Owing to their unconventional bulk-boundary correspondence, higher-order topological insulators and superconductors possess novel boundary modes whose dimensions are always lower than the first-order (or say conventional) topological insulators and superconductors, provided that their bulk dimensions are the same. The essence of higher-order topological phase is the formation of Dirac-mass domain walls on the gapped one-dimensional lower boundary. Roughly speaking, the origins of the formation can be classified as " intrinsic” and " extrinsic” type. For the former case, the formation of domain walls is forced by symmetry, suggesting that the resulting higher-order topological phases can be taken as topological crystalline phases. For this case, the domain walls are quite robust if the corresponding symmetry is preserved. For the latter case, the domain walls are formed simply because the one-dimensional lower boundary modes are gapped in a nontrivial way, however, the nontrivial way is not forced by symmetry. For this case, the domain walls are also stable against perturbations as long as the separations between them are large enough. The domain walls can have various patterns, which indicates that the higher-order topological phases are very rich. In this paper, we first reveal the connection between the higher-order topological phase and the first-order topological phase. Concretely, we show how to realize a higher-order topological phase by breaking some symmetries of a first-order topological phase, as well as stacking lower-dimensional first-order topological systems in an appropriate way. After these, we review the recent progress of theoretical and experimental study of higher-order topological insulators and superconductors. For the higher-order topological insulators, we find that the electronic materials are still laking though a lot of experimental realizations have been achieved. For higher-order topological superconductors, we find that their experimental realization and investigation are still in the very primary stage though quite a lot of relevant theoretical studies have been carried out. In order to comprehensively understand this newly-emerging field there are still many things to be done.
      Corresponding author: Yan Zhong-Bo, yanzhb5@mail.sysu.edu.cn
    [1]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [2]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [3]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [4]

    Wen X G 2017 Rev. Mod. Phys. 89 041004

    [5]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [6]

    Klitzing K V 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Wen X G 2004 Quantum Field Theory of Many-body Systems: from the Origin of Sound to an Origin of Light and Electrons (1st Ed.) (New York: Oxford University Press) pp5–9

    [8]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [9]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [10]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [11]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [12]

    Koing M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [13]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [14]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [15]

    Roy R 2009 Phys. Rev. B 79 195322Google Scholar

    [16]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [17]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [18]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [19]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083

    [20]

    Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001Google Scholar

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [22]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [23]

    Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113Google Scholar

    [24]

    Stanescu T D, Tewari S 2013 J. Phys: Condens. Matter 25 233201Google Scholar

    [25]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [26]

    Kitaev A Y 2009 AIP Conference Proceedings 1134 22

    [27]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [28]

    Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

    [29]

    Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z J 2019 Nature 566 480

    [30]

    Feng T, Po H C, Vishwanath A, Wan X G 2019 Nature 566 486Google Scholar

    [31]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [32]

    Schindler F, Cook A M, Vergniory M G, Wang Z J, Parkin S S P, Bernevig B A, Neupert T 2018 Science Advances 4 eaat0346Google Scholar

    [33]

    Song Z D, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402

    [34]

    Langbehn J, Peng Y, Trifunovic L, Oppen F V, Brouwer P W 2017 Phys. Rev. Lett. 119 246401

    [35]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115Google Scholar

    [36]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [37]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [38]

    Yan Z B, Song F, Wang Z 2018 Phys. Rev. Lett. 121 096803Google Scholar

    [39]

    Jackiw R, Rebbi C 1976 Phys. Rev. D 13 3398Google Scholar

    [40]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [41]

    Matsugatani A, Watanabe H 2018 Phys. Rev. B 98 205129Google Scholar

    [42]

    Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807Google Scholar

    [43]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 110 046404Google Scholar

    [44]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [45]

    Geier M, Trifunovic L, Hoskam M, Brouwer P W 2018 Phys. Rev. B 97 205135Google Scholar

    [46]

    Franca S, van den Brink J, Fulga I C 2018 Phys. Rev. B 98 201114Google Scholar

    [47]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [48]

    Miert G V, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [49]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [50]

    Calugaru D, Juricic V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [51]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012

    [52]

    Ahn J, Yang B J 2018 arXiv: 1810.05363 [cond-mat.mes-hall]

    [53]

    Kudo K, Yoshida T, Hatsugai Y 2019 arXiv: 1905.03484 [cond-mat.str-el]

    [54]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [55]

    Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342Google Scholar

    [56]

    Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T, Thomale R 2018 Nat. Phys. 14 925Google Scholar

    [57]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nature Materials 18 108Google Scholar

    [58]

    Ni X, Weiner M, Alu A, Khanikaev A B 2019 Nature Materials 18 113Google Scholar

    [59]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [60]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [61]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [63]

    Fan H Y, Xia B Z, Tong L, Zheng S J, Yu D J 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [64]

    Schindler F, Wang Z J, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Gueron S, Yazdani A, Bernevig B A, Nepert T 2018 Nat. Phys. 14 918Google Scholar

    [65]

    Yue C M, Xu Y F, Song Z D, Weng H M, Lu Y M, Fang C, Dai X 2019 Nat. Phys. 15 577Google Scholar

    [66]

    Xu Y F, Song Z D, Wang Z J, Weng H M, Dai X 2019 Phys. Rev. Lett. 122 256402Google Scholar

    [67]

    Wang Z J, Wieder B J, Li J, Yan B H, Bernevig B A 2018 arXiv: 1806.11116 [cond-mat.mltr-sci]

    [68]

    Sheng X L, Chen C, Liu H Y, Chen Z Y, Zhao Y X, Yu Z M, Yang S Y A 2019 arXiv: 1904.09985 [cond-mat.mes-hall]

    [69]

    Lee E, Kim R, Ahn J, Yang B J 2019 arXiv: 1904.11452 [cond-mat.mltr-sci]

    [70]

    Kempkes S N, Slot M R, van den Broeke J J, Capiod P, Benalcazar W A, Vanmaekelbergh D, Bercioux D, Swart I, Smith C M 2019 arXiv: 1905.06053 [cond-mat.mes-hall]

    [71]

    Zhu X Y 2018 Phys. Rev. B 97 205134Google Scholar

    [72]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [73]

    Wang Q Y, Liu C C, Lu Y M, Zhang F 2018 Phys. Rev. Lett. 121 186801Google Scholar

    [74]

    Zhang R X, Cole W S, Sarma S D 2019 Phys. Rev. Lett. 122 187001Google Scholar

    [75]

    Liu T, He J J, Nori F 2018 Phys. Rev. B 98 245413Google Scholar

    [76]

    Wu Y J, Hou J P, Li Y M, Luo X W, Zhang C W 2019 arXiv: 1905.08896 [cond-mat.mes-hall]

    [77]

    Pan X H, Yang K J, Chen L, Xu G, Liu C X, Liu X 2018 arXiv: 1812.10989 [cond-mat.mes-hall]

    [78]

    Zhang R X, Cole W S, Wu X X, Sarma D S 2019 arXiv: 1905.10647 [cond-mat.supr-con]

    [79]

    Wu X X, Liu X, Thomale R, Liu C X 2019 arXiv: 1905.10648 [cond-mat.supr-con]

    [80]

    Peng Y, Xu Y 2019 Phys. Rev. B 99 195431Google Scholar

    [81]

    Yan Z B 2019 arXiv: 1907.02070 [cond-mat.mes-hall]

    [82]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [83]

    Queiroz R, Stern A 2019 Phys. Rev. Lett. 123 036802Google Scholar

    [84]

    Wang Y X, Lin M, Hughes T L 2018 Phys. Rev. B 98 165144Google Scholar

    [85]

    Wu Z G, Yan Z B, Huang W 2019 Phys. Rev. B 99 020508Google Scholar

    [86]

    Zhu X Y 2019 Phys. Rev. Lett. 122 236401Google Scholar

    [87]

    Shapourian H, Wang Y X, Ryu S 2018 Phys. Rev. B 97 094508Google Scholar

    [88]

    Yan Z B 2019 arXiv: 1905.11411 [cond-mat.supr-con]

    [89]

    Ahn J, Yang B J 2019 arXiv: 1906.02709 [cond-mat.mes-hall]

    [90]

    Gray M J, Freudenstein J, Zhao Y S F, Oconnor R, Jenkins S, Kumar N, Hoek M, Koper A, Taniguchi T, Watanabe K, Zhong R D, Gu G D, Burch K S 2019 Nano Lett. 19 4890Google Scholar

    [91]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [92]

    Jack B, Xie Y L, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255Google Scholar

    [93]

    Lin M, Hughes T L 2018 Phys. Rev. B 98 241103Google Scholar

    [94]

    Ghorashi S A A, Hu X, Hughes T L, Rossi E 2019 Phys. Rev. B 100 020509Google Scholar

  • 图 1  拓扑物态的边界态示意图 $n = 1$的行对应传统的拓扑物态, 其具有比系统维度低一维的无能隙边界态; $n \geqslant 2$的行对应高阶拓扑物态, 其具有比维度低n维的无能隙边界态

    Fig. 1.  A schematic diagram of the boundary modes of topological matter. The line with $n = 1$ corresponds to conventional topological matters which host gapless modes whose dimensions are one-dimensional lower than the system dimension. The lines with $n \geqslant 2$ correspond to higher-order topological matters which host gapless modes whose dimensions are n-dimensional lower than the system dimension.

    图 2  从一阶拓扑绝缘体到二阶拓扑绝缘体 (a) 沿x方向取开放边界条件(${L_x} = 100$), 沿y方向取周期边界条件, 参数为$M = B = A = 1$, $\varLambda = 0$, 对应BHZ模型, 能谱反映出无能隙边界态的存在; (b) 插图中红点对应的能量本征态的波函数分布, 参数同(a), 但沿xy两个方向均取开放边界条件; 红色的深浅对应波函数分布概率的大小, 可以看出对一阶拓扑绝缘体, 波函数分布在整个边界上; (c) 边界条件和参数同(a), 除了此处$\varLambda = 0.5$, 可看出Λ项的出现让边界态打开了能隙; (d) 零模的波函数分布, 参数同(c), 但沿xy两个方向均取开放边界条件; 从插图中可发现存在四个零模, 这四个零模的波函数局域在四个角上

    Fig. 2.  From first-order topological insulator to second-order topological insulator. (a) Energy spectra for a sample with open boundary condition in the x direction (the system size ${L_x} = 100$) and periodic boundary condition in the y direction. Parameters are $M = B = A = 1$, $\varLambda = 0$, which corresponds to the original BHZ model. The energy spectra reflect the existence of gapless boundary modes. (b) the density profile of a boundary mode. The parameters are the same as in (a), but now open boundary conditions are taken both in the x and y directions. One can see that the density profile of the boundary mode distributes over the whole boundary. (c) the boundary conditions and parameters are the same as in (a), except now $\varLambda = 0.5$. One can see that the presence of the Λ term opens a gap for the boundary modes. (d) the density profiles of zero modes.The parameters are the same as in (c), but now open boundary conditions are taken both in the x and y directions. One can see that there are four zero-energy modes in the inset. Their wave functions are found to be localized around the corners.

    图 3  从一维一阶拓扑绝缘体到二维二阶拓扑绝缘体 (a) 一维SSH链的示意图; (b) 利用一维SSH链构造二维二阶拓扑绝缘体, 每个单位元胞中有一个${\text{π}}$磁通

    Fig. 3.  Constructing two-dimensional second-order topological insulator by using one-dimensional topological insulator: (a) A schematic diagram of the SSH chain; (b) using the one-dimensional SSH chains to construct a two-dimensional second-order topological insulator, within each small square, there is a ${\text{π}}$-flux.

  • [1]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [2]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [3]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [4]

    Wen X G 2017 Rev. Mod. Phys. 89 041004

    [5]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [6]

    Klitzing K V 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Wen X G 2004 Quantum Field Theory of Many-body Systems: from the Origin of Sound to an Origin of Light and Electrons (1st Ed.) (New York: Oxford University Press) pp5–9

    [8]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [9]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [10]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [11]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [12]

    Koing M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [13]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [14]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [15]

    Roy R 2009 Phys. Rev. B 79 195322Google Scholar

    [16]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [17]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [18]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [19]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083

    [20]

    Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001Google Scholar

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [22]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [23]

    Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113Google Scholar

    [24]

    Stanescu T D, Tewari S 2013 J. Phys: Condens. Matter 25 233201Google Scholar

    [25]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [26]

    Kitaev A Y 2009 AIP Conference Proceedings 1134 22

    [27]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [28]

    Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

    [29]

    Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z J 2019 Nature 566 480

    [30]

    Feng T, Po H C, Vishwanath A, Wan X G 2019 Nature 566 486Google Scholar

    [31]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [32]

    Schindler F, Cook A M, Vergniory M G, Wang Z J, Parkin S S P, Bernevig B A, Neupert T 2018 Science Advances 4 eaat0346Google Scholar

    [33]

    Song Z D, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402

    [34]

    Langbehn J, Peng Y, Trifunovic L, Oppen F V, Brouwer P W 2017 Phys. Rev. Lett. 119 246401

    [35]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115Google Scholar

    [36]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [37]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [38]

    Yan Z B, Song F, Wang Z 2018 Phys. Rev. Lett. 121 096803Google Scholar

    [39]

    Jackiw R, Rebbi C 1976 Phys. Rev. D 13 3398Google Scholar

    [40]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [41]

    Matsugatani A, Watanabe H 2018 Phys. Rev. B 98 205129Google Scholar

    [42]

    Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807Google Scholar

    [43]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 110 046404Google Scholar

    [44]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [45]

    Geier M, Trifunovic L, Hoskam M, Brouwer P W 2018 Phys. Rev. B 97 205135Google Scholar

    [46]

    Franca S, van den Brink J, Fulga I C 2018 Phys. Rev. B 98 201114Google Scholar

    [47]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [48]

    Miert G V, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [49]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [50]

    Calugaru D, Juricic V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [51]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012

    [52]

    Ahn J, Yang B J 2018 arXiv: 1810.05363 [cond-mat.mes-hall]

    [53]

    Kudo K, Yoshida T, Hatsugai Y 2019 arXiv: 1905.03484 [cond-mat.str-el]

    [54]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [55]

    Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342Google Scholar

    [56]

    Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T, Thomale R 2018 Nat. Phys. 14 925Google Scholar

    [57]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nature Materials 18 108Google Scholar

    [58]

    Ni X, Weiner M, Alu A, Khanikaev A B 2019 Nature Materials 18 113Google Scholar

    [59]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [60]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [61]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [63]

    Fan H Y, Xia B Z, Tong L, Zheng S J, Yu D J 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [64]

    Schindler F, Wang Z J, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Gueron S, Yazdani A, Bernevig B A, Nepert T 2018 Nat. Phys. 14 918Google Scholar

    [65]

    Yue C M, Xu Y F, Song Z D, Weng H M, Lu Y M, Fang C, Dai X 2019 Nat. Phys. 15 577Google Scholar

    [66]

    Xu Y F, Song Z D, Wang Z J, Weng H M, Dai X 2019 Phys. Rev. Lett. 122 256402Google Scholar

    [67]

    Wang Z J, Wieder B J, Li J, Yan B H, Bernevig B A 2018 arXiv: 1806.11116 [cond-mat.mltr-sci]

    [68]

    Sheng X L, Chen C, Liu H Y, Chen Z Y, Zhao Y X, Yu Z M, Yang S Y A 2019 arXiv: 1904.09985 [cond-mat.mes-hall]

    [69]

    Lee E, Kim R, Ahn J, Yang B J 2019 arXiv: 1904.11452 [cond-mat.mltr-sci]

    [70]

    Kempkes S N, Slot M R, van den Broeke J J, Capiod P, Benalcazar W A, Vanmaekelbergh D, Bercioux D, Swart I, Smith C M 2019 arXiv: 1905.06053 [cond-mat.mes-hall]

    [71]

    Zhu X Y 2018 Phys. Rev. B 97 205134Google Scholar

    [72]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [73]

    Wang Q Y, Liu C C, Lu Y M, Zhang F 2018 Phys. Rev. Lett. 121 186801Google Scholar

    [74]

    Zhang R X, Cole W S, Sarma S D 2019 Phys. Rev. Lett. 122 187001Google Scholar

    [75]

    Liu T, He J J, Nori F 2018 Phys. Rev. B 98 245413Google Scholar

    [76]

    Wu Y J, Hou J P, Li Y M, Luo X W, Zhang C W 2019 arXiv: 1905.08896 [cond-mat.mes-hall]

    [77]

    Pan X H, Yang K J, Chen L, Xu G, Liu C X, Liu X 2018 arXiv: 1812.10989 [cond-mat.mes-hall]

    [78]

    Zhang R X, Cole W S, Wu X X, Sarma D S 2019 arXiv: 1905.10647 [cond-mat.supr-con]

    [79]

    Wu X X, Liu X, Thomale R, Liu C X 2019 arXiv: 1905.10648 [cond-mat.supr-con]

    [80]

    Peng Y, Xu Y 2019 Phys. Rev. B 99 195431Google Scholar

    [81]

    Yan Z B 2019 arXiv: 1907.02070 [cond-mat.mes-hall]

    [82]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [83]

    Queiroz R, Stern A 2019 Phys. Rev. Lett. 123 036802Google Scholar

    [84]

    Wang Y X, Lin M, Hughes T L 2018 Phys. Rev. B 98 165144Google Scholar

    [85]

    Wu Z G, Yan Z B, Huang W 2019 Phys. Rev. B 99 020508Google Scholar

    [86]

    Zhu X Y 2019 Phys. Rev. Lett. 122 236401Google Scholar

    [87]

    Shapourian H, Wang Y X, Ryu S 2018 Phys. Rev. B 97 094508Google Scholar

    [88]

    Yan Z B 2019 arXiv: 1905.11411 [cond-mat.supr-con]

    [89]

    Ahn J, Yang B J 2019 arXiv: 1906.02709 [cond-mat.mes-hall]

    [90]

    Gray M J, Freudenstein J, Zhao Y S F, Oconnor R, Jenkins S, Kumar N, Hoek M, Koper A, Taniguchi T, Watanabe K, Zhong R D, Gu G D, Burch K S 2019 Nano Lett. 19 4890Google Scholar

    [91]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [92]

    Jack B, Xie Y L, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255Google Scholar

    [93]

    Lin M, Hughes T L 2018 Phys. Rev. B 98 241103Google Scholar

    [94]

    Ghorashi S A A, Hu X, Hughes T L, Rossi E 2019 Phys. Rev. B 100 020509Google Scholar

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] 蒋婧, 王小云, 孔鹏, 赵鹤平, 何兆剑, 邓科. 声学四极子拓扑绝缘体中的位错态. 物理学报, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [3] 谢向男, 李成, 曾俊炜, 周珅, 江天. 本征磁性拓扑绝缘体MnBi2Te4研究进展. 物理学报, 2023, 72(18): 187101. doi: 10.7498/aps.72.20230704
    [4] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [5] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [6] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展. 物理学报, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [7] 郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印. 二维各向异性SSH模型的拓扑性质研究. 物理学报, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [8] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [9] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [10] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [11] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [12] 王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰. 拓扑光子学研究进展. 物理学报, 2019, 68(22): 224206. doi: 10.7498/aps.68.20191437
    [13] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] 敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起. 三维拓扑绝缘体antidot阵列结构中的磁致输运研究. 物理学报, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [15] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [16] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [17] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [19] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [20] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
计量
  • 文章访问数:  28518
  • PDF下载量:  2499
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2019-08-22
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回