搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋和电荷分别掺杂的新一类稀磁 半导体研究进展

邓正 赵国强 靳常青

引用本文:
Citation:

自旋和电荷分别掺杂的新一类稀磁 半导体研究进展

邓正, 赵国强, 靳常青

Recent progress of a new type diluted magnetic semiconductors with independent charge and spin doping

Deng Zheng, Zhao Guo-Qiang, Jin Chang-Qing
PDF
HTML
导出引用
  • 稀磁半导体兼具半导体材料和磁性材料的双重特性, 是破解摩尔定律难题的方案之一. 我们团队通过提出自旋和电荷分别掺杂的机制, 研制发现了一类新型稀磁半导体材料, 为突破经典稀磁半导体材料自旋和电荷一体掺杂引起的材料制备瓶颈提供了有效解决方案. (Ba,K)(Zn,Mn)2As2(BZA)等新型稀磁半导体通过等价掺杂磁性离子引入自旋、异价非磁性离子掺杂引入电荷, 实现了230 K的居里温度, 刷新了可控型稀磁半导体的居里温度记录. 本文重点介绍1)几种代表性的自旋和电荷掺杂机制分离的新型稀磁半导体的发现与研制; 2)新型稀磁半导体的μ子自旋弛豫与高压物性结构的调控; 3)大尺寸单晶生长、基于单晶的安德烈夫异质结研制以及自旋极化率的测量. 通过新材料设计研制、综合物性研究、简单原型器件构建的“全链条”模式研究, 开拓了自旋电荷分别掺杂的稀磁半导体材料研究领域, 展现了这类新型稀磁半导体材料潜在的光明前景.
    Due to the potential applications for spintronics devices, diluted ferromagnetic semiconductors (DMS) have received extensive attention for decades. However, in classical Ⅲ–Ⅴ based DMS material, such as (Ga,Mn)As, heterovalent (Ga3+, Mn2+) doping results in lack of individual control of carrier and spin doping, and seriously limited chemical solubility. The two difficulties prevent furtherincrease of the Curie temperature of the Ⅲ–Ⅴ based DMS. To overcome these difficulties, a series of new types of DMS with independent spin and charge doping have been synthesized, such as Ⅰ–Ⅱ–Ⅴ based LiZnAs and Ⅱ–Ⅱ–Ⅴ based (Ba,K)(Zn,Mn)2As2. In these new materials, isovalent (Zn,Mn) substitution is only spin doping, while charge is independently doped by heterovalentsubstitution of non-magnetic elements. As a result (Ba,K)(Zn,Mn)2As2 obtains the reliable record of Curie temperature (230 K) among DMS in which ferromagnetic ordering is mediated by itinerate carriers. In this review, we summarize the recent development of the new DMS materials with following aspects: 1) the discovery and synthesis of several typical new DMS materials; 2) physical properties studies with muon spin relaxation and in-situ high pressure techniques; 3) single crystal growth, Andreev reflection junction based on single crystal and measurements of spin polarization.
      通信作者: 靳常青, jin@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0405703, 2018YFA03057001)和国家自然科学基金(批准号: 11534016)资助的课题.
      Corresponding author: Jin Chang-Qing, jin@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFB0405703, 2018YFA03057001) and the National Natural Science Foundation of China (Grant No. 11534016).
    [1]

    Furdyna J K 1991 Diluted Magnetic Semiconductors(National Academy Press)

    [2]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Modern Phys. 76 323Google Scholar

    [3]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [4]

    ZHAO J 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [5]

    常凯, 夏建白 2004 物理 33 414Google Scholar

    Chang K, Xia J B 2004 Physics 33 414Google Scholar

    [6]

    Ohno H 1998 Science 281 951Google Scholar

    [7]

    Dietl T 2000 Science 287 1019Google Scholar

    [8]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [9]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [10]

    赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109

    [11]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [12]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [13]

    邓正, 赵侃, 靳常青 2013 物理 42 682Google Scholar

    Deng Z, Zhao K, Jin C Q 2013 Physics 42 682Google Scholar

    [14]

    Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, Jin C 2013 Sci. China: Phys. Mech. Astron. 56 2026Google Scholar

    [15]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(R)Google Scholar

    [16]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [17]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [18]

    Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [19]

    Žutić I, Zhou T 2018 Sci. China: Phys. Mech. Astron. 61 067031Google Scholar

    [20]

    Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J, Jin C Q 2014 Phys. Rev. B 90 155202Google Scholar

    [21]

    Ning F L, Man H, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B 2014 Phys. Rev. B 90 085123Google Scholar

    [22]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [23]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(R)Google Scholar

    [24]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B, Jin C, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [25]

    Gu B, Maekawa S 2016 Phys. Rev. B 94 155202Google Scholar

    [26]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [27]

    Chen B, Deng Z, Wang X, Feng S, Yuan Z, Zhang S, Liu Q, Jin C 2016 Chin. Phys. B 25 077503Google Scholar

    [28]

    Chen B, Deng Z, Li W, Gao M, Zhao J, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 AIP Adv. 6 115014Google Scholar

    [29]

    Chen B, Deng Z, Li W, Gao M, Liu Q, Gu CZ, Hu F X, Shen B G, Frandsen B, Cheung S, Lian L, Uemura Y J, Ding C, Guo S, Ning F, Munsie T J, Wilson M N, Cai Y, Luke G, Guguchia Z, Yonezawa S, Li Z, Jin C 2016 Sci. Rep. 6 36578Google Scholar

    [30]

    Chen B, Deng Z, Li W, Gao M, Li Z, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 J. Appl. Phys. 120 083902Google Scholar

    [31]

    Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M, Cao L X 2017 AIP Adv. 7 045017Google Scholar

    [32]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [33]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [34]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [35]

    Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C, Jin C Q 2018 J. Phys.: Condensed Matter 30 254001Google Scholar

    [36]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng, Z Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Scientific Reports 9 7490Google Scholar

    [37]

    Peng Y, Yu S, Zhao G Q, Li W M, Zhao J F, Cao L P, Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H, Jin C Q 2019 Chin. Phys. B 28 057501Google Scholar

    [38]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(R)Google Scholar

    [39]

    Furdyna J K 2016 Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temprature Spintronics (Woodhead Publishing)

    [40]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [41]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(R)Google Scholar

    [42]

    Ding C, Ning F 2014 Sci. Sin.: Phys Mech. Astron. 44 1140Google Scholar

    [43]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [44]

    Novak V, Olejnik K, Wunderlich J, Cukr M, Vyborny K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J, Jungwirth T 2008 Phys. Rev. Lett. 101 077201Google Scholar

    [45]

    Xiao Z, Hiramatsu H, Ueda S, Toda Y, Ran F Y, Guo J, Lei H, Matsuishi S, Hosono H, Kamiya T 2014 J. Am. Chem. Soc. 136 14959Google Scholar

    [46]

    Braden J G, Parker J S, Xiong P, Chun S H, Samarth N 2003 Phys. Rev. Lett. 91 056602Google Scholar

    [47]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [48]

    Gu G, Zhao G, Lin C, Li Y, Jin C, Xiang G 2018 Appl. Phys. Lett. 112 032402Google Scholar

  • 图 1  (a) (Ga,Mn)As的晶体结构, 其中Mn同时引入电荷和自旋; (b) Li(Zn,Mn)As的晶体结构, 其中Mn仅引入自旋, 电荷来自Li含量的变化[12]

    Fig. 1.  (a) Crystal structure of (Ga,Mn)As, in which dependent charge and spin doping by Mn2+ dopant; (b) crystal structure of Li(Zn,Mn)As, in which spin is doped by isovalent (Zn,Mn) substitution while charge is doped by controlling Li concentration[12].

    图 2  (a)不同Mn含量Li1.1(Zn,Mn)As的M(T)曲线; (b)不同Mn含量Li1.1(Zn,Mn)As的M(H)曲线, 其中灰色的磁滞回线对应了上方的横坐标; (c)样品Li1.1(Zn0.95Mn0.05)As在低温下的霍尔电阻, 15 K以下表现出了明显的反常霍尔效应[12]

    Fig. 2.  (a) Temperature dependence of magnetization of Li1.1(Zn1xMnx)As; (b) field dependence of magnetization of Li1.1(Zn1xMnx)As at various tempeartures; (c) Hall resistance of Li1.1(Zn0.95Mn0.05)As and the anomalous Hall effect below 15 K[12].

    图 3  (a) BZA的晶体结构中, Mn引入自旋, K引入电荷; (b) Li(Zn,Mn)As中[Zn/MnAs4]四面体的间距; (c) BZA中[Zn/MnAs4]四面体的间距[17]

    Fig. 3.  (a) Crystal structure of BZA, in which spin is doped by isovalent (Zn,Mn) substitution while charge is doped by (Ba,K)substitution; (b) distance of nearest [Zn/MnAs4] tetrahedra (4.20 Å) in Li(Zn,Mn)As; (c) distance of nearest [Zn/MnAs4] tetrahedra (2.91 Å) in BZA[17].

    图 4  (a)不同K, Mn含量(Ba,K)(Zn,Mn)2As2ρ(T)曲线; (b)样品(Ba0.7K0.3)(Zn0.85Mn0.15)2As2M(T)和M(H), M(T)中上升的拐点即为230 K的居里温度点; (c)样品(Ba0.85K0.15)(Zn0.9Mn0.1)2As2在低温下的霍尔电阻, 50 K以下表现出了明显的反常霍尔效应[17]

    Fig. 4.  (a) Temperature dependence of resistivity of (Ba,K)(Zn,Mn)2As2; (b) temperature dependence of magnetization and field dependence of magnetization (inset) of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, the upturn point, namely Curie temperature is 230 K; (c) Hall resistance of (Ba0.85K0.15)(Zn0.9Mn0.1)2As2 and the anomalous Hall effect below 50 K[17].

    图 5  μSR测试结果汇总 (a) ZF模式下Li1.1(Zn0.95Mn0.05)As的时间谱; (b) ZF模式与WTF模式下Li1.1(Zn0.95Mn0.05)As铁磁含量的拟合结果, 两者互相吻合[12]; (c) ZF模式下(Ba0.80K0.20)(Zn0.9Mn0.1)2As2的时间谱; (d) ZF模式与WTF模式下(Ba0.80K0.20)(Zn0.9Mn0.1)2As2铁磁含量的拟合结果, 铁磁体积含量与SQUID的测量结果吻合[17]

    Fig. 5.  Results of muon spin relaxation measurements: (a) Time spectra of Li1.1(Zn0.95Mn0.05)As in ZF process; (b) the volume fraction of the magnetically ordered region in Li1.1(Zn0.95Mn0.05)As, derived from ZF and WTF spectra[12]; (c) time spectra of (Ba0.80K0.20)(Zn0.9Mn0.1)2As2 in ZF process; (d) the volume fraction of the magnetically ordered region in (Ba0.80K0.20)(Zn0.9Mn0.1)2As2, derived from ZF and WTF spectra[17].

    图 6  (Ba0.75K0.25)(Zn0.95Mn0.05)2As2的高压表征 (a)常压下As的K边XAS和XMCD谱; (b) 2 K时高压原位的As-K边XMCD谱, 插图为XMCD谱的最高值随压力的变化; (c) 不同压力的电阻-温度曲线; (d)常温下XES谱随压力的演化, 插图为ΔE'随压力变化[26,34]

    Fig. 6.  In-situ high pressure properties of (Ba0.75K0.25)(Zn0.95Mn0.05)2As2: (a) As K-edge XAS near edge structure (black curve) and XMCD (blue curve) data takenat T = 2 K and ambient pressure; (b) pressure-dependent As K-edge XMCD signal, the inset is XMCD peak intensity normalized to unity at ambient pressure, dreen data points are compression data, while the red data point was obtained on decompression; (c) temperature-dependent resistance plots at various pressures; (d) X-ray emission spectra at high pressures and room temperature, the spectra were shifted in the vertical for clarity, red solid lines are fits using three Gaussian functions; left corner inset: energy difference ΔE'[26,34].

    图 7  (Ba0.80K0.20)(Zn0.95Mn0.05)2As2的晶格常数随压力的变化, 左下角插图显示了ZnAs层间As-As距离, 右上角插图显示了MnAs4四面体内的As-Zn-As夹角α[34]

    Fig. 7.  Lattice parameters of (Ba0.80K0.20)(Zn0.95Mn0.05)2As2 as a function of pressure. Data were normalized to unity at ambient pressure. Left corner inset: crystal structure of (Ba,K)(Zn,Mn)2As2, and the pressure dependence of interlayer As-As distance d. Upper right corner inset: MnAs4 tetrahedron geometry, and the pressure dependence of As-Mn-As bond angle α in the MnAs4 tetrahedron[34].

    图 8  (a)不同温度下Pb-BZA结的安德烈夫反谱以及拟合结果[47]; (b)低温下Pb-BNZA结的安德烈夫反谱以及拟合结果[48]

    Fig. 8.  (a) The Andreev reflection spectra of Pb-BZA heterjunction and the best BTK fit[47]; (b) Andreev reflection spectra of Pb-BNZA and the best BTK fit[48].

    图 9  (a) 2θ模式下BZA单晶的XRD谱, 插图为单晶照片以及晶体结构示意图; (b)沿不同方向测量的BZA单晶的M(T)曲线; (c)以BZA单晶为基础构造的安德烈夫反射结示意图[47]

    Fig. 9.  (a) XRD pattern of BZA single crystal with 2θ process, the insets are photographic of the single crystal and crystal structure of BZA; (b) temperature dependence of magnetization of the single crystal along ab-plane and c-axis; (c) sketch of the Andreev reflection junction based on BZA single crystal[47].

    图 10  三类不同功能材料的结构示意图 (a)超导体(Ba,K)Fe2As2; (b)铁磁性稀磁半导体BZA; (c)反铁磁体BaMn2As2[17]

    Fig. 10.  Crystal structure and lattice parameters of (a) superconductor (Ba,K)Fe2As2; (b) ferromagnetic DMS BZA; (c) antiferromagnetic BaMn2As2[17].

    图 11  稀磁半导体发展路线图[11]

    Fig. 11.  Roadmap on DMS[11].

  • [1]

    Furdyna J K 1991 Diluted Magnetic Semiconductors(National Academy Press)

    [2]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Modern Phys. 76 323Google Scholar

    [3]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [4]

    ZHAO J 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [5]

    常凯, 夏建白 2004 物理 33 414Google Scholar

    Chang K, Xia J B 2004 Physics 33 414Google Scholar

    [6]

    Ohno H 1998 Science 281 951Google Scholar

    [7]

    Dietl T 2000 Science 287 1019Google Scholar

    [8]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [9]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [10]

    赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109

    [11]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [12]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [13]

    邓正, 赵侃, 靳常青 2013 物理 42 682Google Scholar

    Deng Z, Zhao K, Jin C Q 2013 Physics 42 682Google Scholar

    [14]

    Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, Jin C 2013 Sci. China: Phys. Mech. Astron. 56 2026Google Scholar

    [15]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(R)Google Scholar

    [16]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [17]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [18]

    Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [19]

    Žutić I, Zhou T 2018 Sci. China: Phys. Mech. Astron. 61 067031Google Scholar

    [20]

    Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J, Jin C Q 2014 Phys. Rev. B 90 155202Google Scholar

    [21]

    Ning F L, Man H, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B 2014 Phys. Rev. B 90 085123Google Scholar

    [22]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [23]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(R)Google Scholar

    [24]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B, Jin C, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [25]

    Gu B, Maekawa S 2016 Phys. Rev. B 94 155202Google Scholar

    [26]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [27]

    Chen B, Deng Z, Wang X, Feng S, Yuan Z, Zhang S, Liu Q, Jin C 2016 Chin. Phys. B 25 077503Google Scholar

    [28]

    Chen B, Deng Z, Li W, Gao M, Zhao J, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 AIP Adv. 6 115014Google Scholar

    [29]

    Chen B, Deng Z, Li W, Gao M, Liu Q, Gu CZ, Hu F X, Shen B G, Frandsen B, Cheung S, Lian L, Uemura Y J, Ding C, Guo S, Ning F, Munsie T J, Wilson M N, Cai Y, Luke G, Guguchia Z, Yonezawa S, Li Z, Jin C 2016 Sci. Rep. 6 36578Google Scholar

    [30]

    Chen B, Deng Z, Li W, Gao M, Li Z, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 J. Appl. Phys. 120 083902Google Scholar

    [31]

    Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M, Cao L X 2017 AIP Adv. 7 045017Google Scholar

    [32]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [33]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [34]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [35]

    Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C, Jin C Q 2018 J. Phys.: Condensed Matter 30 254001Google Scholar

    [36]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng, Z Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Scientific Reports 9 7490Google Scholar

    [37]

    Peng Y, Yu S, Zhao G Q, Li W M, Zhao J F, Cao L P, Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H, Jin C Q 2019 Chin. Phys. B 28 057501Google Scholar

    [38]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(R)Google Scholar

    [39]

    Furdyna J K 2016 Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temprature Spintronics (Woodhead Publishing)

    [40]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [41]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(R)Google Scholar

    [42]

    Ding C, Ning F 2014 Sci. Sin.: Phys Mech. Astron. 44 1140Google Scholar

    [43]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [44]

    Novak V, Olejnik K, Wunderlich J, Cukr M, Vyborny K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J, Jungwirth T 2008 Phys. Rev. Lett. 101 077201Google Scholar

    [45]

    Xiao Z, Hiramatsu H, Ueda S, Toda Y, Ran F Y, Guo J, Lei H, Matsuishi S, Hosono H, Kamiya T 2014 J. Am. Chem. Soc. 136 14959Google Scholar

    [46]

    Braden J G, Parker J S, Xiong P, Chun S H, Samarth N 2003 Phys. Rev. Lett. 91 056602Google Scholar

    [47]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [48]

    Gu G, Zhao G, Lin C, Li Y, Jin C, Xiang G 2018 Appl. Phys. Lett. 112 032402Google Scholar

  • [1] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体. 物理学报, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [2] 彭毅, 赵国强, 邓正, 靳常青. 面向应用的新一代稀磁半导体研究进展. 物理学报, 2024, 73(1): 017503. doi: 10.7498/aps.73.20231940
    [3] 李春雷, 郑军, 王小明, 徐燕. 光场辐照下稀磁半导体/半导体超晶格中自旋电子输运特性研究. 物理学报, 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [4] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测. 物理学报, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [5] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [6] 杜成旭, 王婷, 杜颖妍, 贾倩, 崔玉亭, 胡爱元, 熊元强, 毋志民. Ag-Cr共掺LiZnP新型稀磁半导体的光电性质. 物理学报, 2018, 67(18): 187101. doi: 10.7498/aps.67.20180450
    [7] 侯清玉, 许镇潮, 乌云, 赵二俊. Cu掺杂ZnO稀磁半导体磁电性能影响的模拟计算. 物理学报, 2015, 64(16): 167201. doi: 10.7498/aps.64.167201
    [8] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [9] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究. 物理学报, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [10] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响. 物理学报, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [11] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响. 物理学报, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [12] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体. 物理学报, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [13] 路忠林, 邹文琴, 徐明祥, 张凤鸣. 单晶和孪晶的Zn0.96Co0.04O稀磁半导体薄膜的制备与研究. 物理学报, 2009, 58(12): 8467-8472. doi: 10.7498/aps.58.8467
    [14] 彭先德, 朱涛, 王芳卫. Co掺杂的ZnO稀磁半导体块体的退火热处理研究. 物理学报, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [15] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质. 物理学报, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [16] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [17] 杜 坚, 张 鹏, 刘继红, 李金亮, 李玉现. 含δ势垒的铁磁/半导体/铁磁异质结中的自旋输运和渡越时间. 物理学报, 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性. 物理学报, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [20] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
计量
  • 文章访问数:  10934
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 修回日期:  2019-08-15
  • 上网日期:  2019-08-19
  • 刊出日期:  2019-08-20

/

返回文章
返回