搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响

刘燕丽 王伟 董燕 陈敦军 张荣 郑有炓

引用本文:
Citation:

结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响

刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓

Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor

Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou
PDF
HTML
导出引用
  • 基于漂移-扩散传输模型、费米狄拉克统计模型以及Shockley-Read-Hall复合模型等, 通过自洽求解薛定谔方程、泊松方程以及载流子连续性方程, 模拟研究了材料结构参数对N极性面GaN/InAlN 高电子迁移率晶体管性能的影响及其物理机制. 结果表明, 增加GaN沟道层的厚度(5—15 nm)与InAlN背势垒层的厚度(10—40 nm), 均使得器件的饱和输出电流增大, 阈值电压发生负向漂移. 器件的跨导峰值随GaN沟道层厚度的增加与InAlN背势垒层厚度的减小而减小. 模拟中, 各种性能参数的变化趋势均随GaN沟道层与InAlN背势垒层厚度的增加而逐渐变缓, 当GaN沟道层厚度超过15 nm、InAlN背势垒层厚度超过40 nm后, 器件的饱和输出电流、阈值电压等参数基本趋于稳定. 材料结构参数对器件性能影响的主要原因可归于器件内部极化效应、能带结构以及沟道中二维电子气的变化.
    Based on the drift-diffusion transport model, Fermi-Dirac statistics and Shockley-Read-Hall recombination model, the effect of the structure parameters on the performance of N-polar GaN/InAlN high electron mobility transistor is investigated by self-consistently solving the Schrodinger equation, Poisson equation and carrier continuity equation. The results indicate that the saturation current density of the device increases and the threshold voltage shifts negatively with GaN channel thickness increasing from 5 nm to 15 nm and InAlN back barrier thickness increasing from 10 nm to 40 nm. The maximum transconductance decreases with GaN channel thickness increasing or InAlN back barrier thickness decreasing. The change trends of the various performance parameters become slow gradually with the increase of the thickness of the GaN channel layer and InAlN back barrier layer. When the GaN channel thickness is beyond 15 nm or the InAlN back barrier thickness is more than 40 nm, the saturation current, the threshold voltage and the maximum transconductance tend to be stable. The influence of the structure parameter on the device performance can be mainly attributed to the dependence of the built-in electric field, energy band structure and the two-dimensional electron gas (2DEG) on the thickness of the GaN channel layer and InAlN back barrier layer. The main physical mechanism is explained as follows. As the GaN channel thickness increases from 5 nm to 15 nm, the bending of the energy band in the GaN channel layer is mitigated, which means that the total built-in electric field in this layer decreases. However, the potential energy drop across this GaN channel layer increases, resulting in the fact that the quantum well at the GaN/InAlN interface becomes deeper. So the 2DEG density increases with GaN channel thickness increasing. Furthermore, the saturation current density of the device increases and the threshold voltage shifts negatively. Moreover, due to the larger distance between the gate and the 2DEG channel, the capability of the gate control of the high electron mobility transistor decreases. Similarly, the depth of the GaN/InAlN quantum well increases with InAlN back barrier thickness increasing from 10 nm to 40 nm, which results in the increase of the 2DEG concentration. Meanwhile, the electron confinement in the quantum well is enhanced. Therefore the device saturation current and the maximum transconductance increase with InAlN back barrier thickness increasing.
      通信作者: 陈敦军, djchen@nju.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 61634002)、国家自然科学基金青年科学基金(批准号: 61804089)、国家自然科学基金联合基金(批准号: U1830109)、山东省高等学校科技计划(批准号: J16LN04)和烟台市重点研发计划(批准号: 2017ZH064)资助的课题
      Corresponding author: Chen Dun-Jun, djchen@nju.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61634002), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61804089), the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1830109), the Science and Technology Program of the Higher Education Institutions of Shandong Province, China (Grant No. J16LN04), and the Key R&D Program of Yantai, China (Grant No. 2017ZH064)
    [1]

    Mishra U K, Likun S, Kazior T E, Wu Y F 2008 Proc. IEEE 96 287Google Scholar

    [2]

    Cao M Y, Zhang K, Chen Y H, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 037305Google Scholar

    [3]

    黄森, 杨树, 唐智凯, 化梦媛, 王鑫华, 魏珂, 包琦龙, 刘新宇, 陈敬 2016 中国科学: 物理学 力学 天文学 46 107307

    Huang S, Yang S, Tang Z K, Hua M Y, Wang X H, Wei K, Bao Q L, Liu X Y, Chen J 2016 Sci. Sin.: Phys. Mech. Astron. 46 107307

    [4]

    Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214Google Scholar

    [5]

    Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Wai T N 2013 Chin. Phys. B 22 026103Google Scholar

    [6]

    李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺 2017 物理学报 66 197301Google Scholar

    Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301Google Scholar

    [7]

    Fitch R C, Walker D E, Green A J, Tetlak S E, Gillespie J K, Gilbert R D, Sutherlin K A, Gouty W D, Theimer J P, Via G D, Chabak K D, Jessen G H 2015 IEEE Electron Device Lett. 36 1004Google Scholar

    [8]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [9]

    Han T C, Zhao H D, Peng X C 2019 Chin. Phys. B 28 047302Google Scholar

    [10]

    Zhao S L, Wang Z Z, Chen D Z, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 027301Google Scholar

    [11]

    Wu Y, Chen C Y, del AlamoJ A 2015 J. Appl. Phys. 117 025707Google Scholar

    [12]

    Yan D W, Ren J, Yang G F, Xiao S Q, Gu X F, Lu H 2015 IEEE Electron Device Lett. 36 1281Google Scholar

    [13]

    Xie G, Xu E, Hashemi N, Zhang B, Fu F Y, Ng W T 2012 Chin. Phys. B 21 086105Google Scholar

    [14]

    Zhang S, Wei K, Ma X H, Zhang Y C, Lei T M 2019 Appl. Phys. Express 12 054007Google Scholar

    [15]

    Lin H K, Huang F H, Yu H L 2010 Solid-State Electron. 54 582Google Scholar

    [16]

    Wu S, Ma X H, Yang L, Mi M H, Zhang M, Wu M, Lu Y, Zhang H S, Yi C P, Hao Y 2019 IEEE Electron Device Lett. 40 846Google Scholar

    [17]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, Lv Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501Google Scholar

    [18]

    Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu, X X, Chen T S 2018 Chin. Phys. B 27 047307Google Scholar

    [19]

    Pardeshi H, Raj G, Pati S, Mohankumar N, Sarkar C K 2013 Superlattices Microstruct. 60 47Google Scholar

    [20]

    Deen D A, Storm D F, Meyer D J, Bass R, Binari S C, Gougousi T, Evans K R 2014 Appl. Phys. Lett. 105 093503Google Scholar

    [21]

    Kong Y C, Zhou J J, Kong C, Dong X, Zhang Y T, Lu H Y, Chen T S 2013 Appl. Phys. Lett. 102 043505Google Scholar

    [22]

    Quan R D, Zhang J C, Xue J S, Zhao Y, Ning J, Lin Z Y, Zhang Y C, Ren Z Y, Hao Y 2016 Chin. Phys. Lett. 33 088102Google Scholar

    [23]

    张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 物理学报 58 3409

    Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409

    [24]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar

    [25]

    Rajan S, Wong M, Fu Y, Wu F, Speck J S, Mishra U K 2005 Jpn J. Appl. Phys. 44 L1478Google Scholar

    [26]

    Keller S, Suh C S, Chen Z, Chu R, Rajan S, Fichtenbaum N A, Denbaars S P, Speck J S, Mishra U K 2008 J. Appl. Phys. 103 033708Google Scholar

    [27]

    Ahmadi E, Wu F, Li H R, Kaun S W, Tahhan M, Hestroffer K, Keller S, Speck J S, Mishra U K 2015 Semicond. Sci. Technol. 30 055012Google Scholar

    [28]

    Ahmadi E, Keller S, Mishra U K 2016 J. Appl. Phys. 120 115302Google Scholar

    [29]

    王现彬, 赵正平, 冯志红 2014 物理学报 63 080202

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202

    [30]

    郝跃, 薛军帅, 张进成 2012 中国科学: 信息科学 42 1577

    Hao Y, Xue J S, Zhang J C 2012 Sci. Sin. Inform. 42 1577

    [31]

    孔月婵, 郑有炓, 储荣明, 顾书林 2003 物理学报 52 1756

    Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756

    [32]

    Selberherr S 1984 Analysis and Simulation of Semiconductor Devices. (New York: Springer-Verlag) p16

    [33]

    Dong Y, Chen D J, Lu H, Zhang R, Zheng Y D 2018 Int. J. Numer. Modell. Eletron. Networks Devices Fields 31 e2299

    [34]

    Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar

    [35]

    Rakoski A, Diez S, Li H R, Keller S, Ahmadi E, Kurdak C 2019 Appl. Phys. Lett. 114 162102Google Scholar

    [36]

    Denninghoff D, Lu J, Laurent M, Ahmadi E, Keller S, Mishra U K 2012 70 th Device Research Conference Pennsylvania, USA, June 18−20, 2012 p151

    [37]

    Wong M H, Keller S, Dasgupta N S, Denninghoff D J, Kolluri S, Brown D F, Lu J, Fichtenbaum N A, Ahmadi E, Singisetti U, Chini A, Rajan S, Denbaars S P, Speck J S, Mishra U K 2013 Semicond. Sci. Technol. 28 074009Google Scholar

  • 图 1  N极性面GaN/InAlN HEMT结构示意图

    Fig. 1.  Schematic of N-polar GaN/InAlN HEMT structure.

    图 2  不同GaN沟道层厚度下, N极性面GaN/InAlN HEMT器件的(a) 输出特性、(b) 转移特性和(c) 跨导曲线

    Fig. 2.  (a) Output characteristics, (b) transfer characteristics, and (c) transconductance curves of N-polar GaN/InAlN HEMTs with different GaN channel thicknesses.

    图 3  不同GaN沟道层厚度下, N极性面GaN/InAlN HEMT器件栅极下方的(a)导带结构和(b)电子浓度分布图

    Fig. 3.  (a) Conduction-band energy diagram and (b) electron distribution in N-polar GaN/InAlN HEMTs with different GaN channel thicknesses.

    图 4  不同InAlN背势垒层厚度下, N极性面GaN/InAlN HEMT器件的(a)输出特性、(b) 转移特性和(c)跨导曲线

    Fig. 4.  (a) Output characteristics, (b) transfer characteristics, and (c) transconductance curves of N-polar GaN/InAlN HEMTs with different InAlN back barrier thicknesses.

    图 5  不同InAlN背势垒层厚度下, N极性面GaN/InAlN HEMT器件栅极下方的(a)导带结构(内插图为三角势阱处导带结构的局部放大图), 以及(b) 电子浓度分布图

    Fig. 5.  (a) Conduction-band energy diagram and (b) electron distribution in N-polar GaN/InAlN HEMTs with different InAlN back barrier thicknesses. The inset in panel (a) is the partial enlarged conduction-band energy of the rectangular quantum well.

  • [1]

    Mishra U K, Likun S, Kazior T E, Wu Y F 2008 Proc. IEEE 96 287Google Scholar

    [2]

    Cao M Y, Zhang K, Chen Y H, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 037305Google Scholar

    [3]

    黄森, 杨树, 唐智凯, 化梦媛, 王鑫华, 魏珂, 包琦龙, 刘新宇, 陈敬 2016 中国科学: 物理学 力学 天文学 46 107307

    Huang S, Yang S, Tang Z K, Hua M Y, Wang X H, Wei K, Bao Q L, Liu X Y, Chen J 2016 Sci. Sin.: Phys. Mech. Astron. 46 107307

    [4]

    Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214Google Scholar

    [5]

    Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Wai T N 2013 Chin. Phys. B 22 026103Google Scholar

    [6]

    李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺 2017 物理学报 66 197301Google Scholar

    Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301Google Scholar

    [7]

    Fitch R C, Walker D E, Green A J, Tetlak S E, Gillespie J K, Gilbert R D, Sutherlin K A, Gouty W D, Theimer J P, Via G D, Chabak K D, Jessen G H 2015 IEEE Electron Device Lett. 36 1004Google Scholar

    [8]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [9]

    Han T C, Zhao H D, Peng X C 2019 Chin. Phys. B 28 047302Google Scholar

    [10]

    Zhao S L, Wang Z Z, Chen D Z, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 027301Google Scholar

    [11]

    Wu Y, Chen C Y, del AlamoJ A 2015 J. Appl. Phys. 117 025707Google Scholar

    [12]

    Yan D W, Ren J, Yang G F, Xiao S Q, Gu X F, Lu H 2015 IEEE Electron Device Lett. 36 1281Google Scholar

    [13]

    Xie G, Xu E, Hashemi N, Zhang B, Fu F Y, Ng W T 2012 Chin. Phys. B 21 086105Google Scholar

    [14]

    Zhang S, Wei K, Ma X H, Zhang Y C, Lei T M 2019 Appl. Phys. Express 12 054007Google Scholar

    [15]

    Lin H K, Huang F H, Yu H L 2010 Solid-State Electron. 54 582Google Scholar

    [16]

    Wu S, Ma X H, Yang L, Mi M H, Zhang M, Wu M, Lu Y, Zhang H S, Yi C P, Hao Y 2019 IEEE Electron Device Lett. 40 846Google Scholar

    [17]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, Lv Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501Google Scholar

    [18]

    Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu, X X, Chen T S 2018 Chin. Phys. B 27 047307Google Scholar

    [19]

    Pardeshi H, Raj G, Pati S, Mohankumar N, Sarkar C K 2013 Superlattices Microstruct. 60 47Google Scholar

    [20]

    Deen D A, Storm D F, Meyer D J, Bass R, Binari S C, Gougousi T, Evans K R 2014 Appl. Phys. Lett. 105 093503Google Scholar

    [21]

    Kong Y C, Zhou J J, Kong C, Dong X, Zhang Y T, Lu H Y, Chen T S 2013 Appl. Phys. Lett. 102 043505Google Scholar

    [22]

    Quan R D, Zhang J C, Xue J S, Zhao Y, Ning J, Lin Z Y, Zhang Y C, Ren Z Y, Hao Y 2016 Chin. Phys. Lett. 33 088102Google Scholar

    [23]

    张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 物理学报 58 3409

    Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409

    [24]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar

    [25]

    Rajan S, Wong M, Fu Y, Wu F, Speck J S, Mishra U K 2005 Jpn J. Appl. Phys. 44 L1478Google Scholar

    [26]

    Keller S, Suh C S, Chen Z, Chu R, Rajan S, Fichtenbaum N A, Denbaars S P, Speck J S, Mishra U K 2008 J. Appl. Phys. 103 033708Google Scholar

    [27]

    Ahmadi E, Wu F, Li H R, Kaun S W, Tahhan M, Hestroffer K, Keller S, Speck J S, Mishra U K 2015 Semicond. Sci. Technol. 30 055012Google Scholar

    [28]

    Ahmadi E, Keller S, Mishra U K 2016 J. Appl. Phys. 120 115302Google Scholar

    [29]

    王现彬, 赵正平, 冯志红 2014 物理学报 63 080202

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202

    [30]

    郝跃, 薛军帅, 张进成 2012 中国科学: 信息科学 42 1577

    Hao Y, Xue J S, Zhang J C 2012 Sci. Sin. Inform. 42 1577

    [31]

    孔月婵, 郑有炓, 储荣明, 顾书林 2003 物理学报 52 1756

    Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756

    [32]

    Selberherr S 1984 Analysis and Simulation of Semiconductor Devices. (New York: Springer-Verlag) p16

    [33]

    Dong Y, Chen D J, Lu H, Zhang R, Zheng Y D 2018 Int. J. Numer. Modell. Eletron. Networks Devices Fields 31 e2299

    [34]

    Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar

    [35]

    Rakoski A, Diez S, Li H R, Keller S, Ahmadi E, Kurdak C 2019 Appl. Phys. Lett. 114 162102Google Scholar

    [36]

    Denninghoff D, Lu J, Laurent M, Ahmadi E, Keller S, Mishra U K 2012 70 th Device Research Conference Pennsylvania, USA, June 18−20, 2012 p151

    [37]

    Wong M H, Keller S, Dasgupta N S, Denninghoff D J, Kolluri S, Brown D F, Lu J, Fichtenbaum N A, Ahmadi E, Singisetti U, Chini A, Rajan S, Denbaars S P, Speck J S, Mishra U K 2013 Semicond. Sci. Technol. 28 074009Google Scholar

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [4] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [9] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [10] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [11] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [12] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [13] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [14] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [15] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [16] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理. 物理学报, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [17] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱. 物理学报, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [18] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [19] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [20] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
计量
  • 文章访问数:  9287
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-27
  • 修回日期:  2019-10-26
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回