搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空化多泡中大气泡对小气泡空化效应的影响

清河美 那仁满都拉

引用本文:
Citation:

空化多泡中大气泡对小气泡空化效应的影响

清河美, 那仁满都拉

Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles

Qinghim, Naranmandula
PDF
HTML
导出引用
  • 依据超声场下形成的空化多泡的形状结构, 建立了两种简化的多泡模型, 即三泡模型和五泡模型, 并利用考虑气泡之间相互作用和液体可压缩性的非线性Keller-Miksis方程, 数值研究了三泡和五泡模型中周围大气泡对中间小气泡空化效应的影响. 结果表明, 在适当条件下随着周围大气泡半径的逐渐增大, 中间小气泡会被完全抑制或会发生延迟膨胀现象. 延迟膨胀的小气泡崩溃时的泡内温度, 当周围大气泡数适当多时, 可以高于相同初始半径的单泡泡内温度. 大小气泡之间的次Bjerknes力在小气泡延迟膨胀时表现为先排斥后吸引, 而正常膨胀大小气泡之间的次Bjerknes力两次都是吸引力.
    In previous papers, researchers generally adopted a simplified assumption that there is a single type of bubble in liquid. In this paper, two simplified bubbles models are established based on the shape and structure of cavitation bubbles formed in ultrasonic field, i.e. linear model consisting of three bubbles and cluster model composed of five bubbles, and each model is assumed to consist of two types of bubbles. The influences of large bubbles on cavitation effect of small bubble in the middle for three- and five-bubble model are numerically studied by using the modified Keller-Miksis equation and van der Waals equation. The changes of the expansion radius of the small bubble in the middle, the temperature in the small bubble and the secondary Bjerknes force between large bubble and small bubble with the increase of the initial radius of large bubbles are mainly investigated. In the calculation, it is assumed that the locations of bubbles stay unchanged and the shape of bubbles remains spherical in the oscillation process. Meanwhile, the time-delay effect on the secondary Bjerknes force can be neglected because the sound wave speed is very fast in water and the bubbles in the liquid can oscillate synchronously. The calculation results show that the expansion of small bubble in the middle can be completely suppressed or delayed when the initial radius and the number of bubbles are appropriate on condition that the distance between large and small bubble, the driving sound pressure and frequency of the applied sound field stay unchanged. The main reason for delayed expansion is that the total pressure acting on small bubbles is delayed to form a negative pressure in the process of the change. The collapse time of delayed expansion of small bubble is basically the same as that of large bubbles, which makes small bubble collapsed rapidly and thoroughly under the strong radiative barotropic effect of large bubble's collapse, and leads the maximum temperature in the small bubble to be higher than that of the single bubble with the same initial radius and the small bubble with normal expansion. In addition, when the expansion of small bubble is delayed, the secondary Bjerknes force between the large bubble and the small bubble appears to be repulsive first and attractive then. This rule is different from the change rule of the secondary Bjerknes force between the two bubbles in normal expansion. The results in this paper have significant theoretical guidance for specific problems such as suppressing liquid cavitation or enhancing liquid cavitation effect by the manual injection of large bubbles.
      通信作者: 那仁满都拉, nrmdlbf@126.com
    • 基金项目: 国家自然科学基金(批准号: 11462019) 资助的课题
      Corresponding author: Naranmandula, nrmdlbf@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11462019)
    [1]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [2]

    Doinikov A A, Zavtrak S T 1998 J. Acoust. Soc. Am. 99 3849

    [3]

    Moussatov A, Granger C, Dubus B 2003 Ultrason. Sonochem. 10 191Google Scholar

    [4]

    Mettin R, Luther S, Ohl C D, Lauterborn W 1999 Ultrason. Sonochem. 6 25Google Scholar

    [5]

    Cr um, Lawrence A 1975 J. Acoust. Soc. Am. 57 1363Google Scholar

    [6]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [7]

    卢义刚, 吴雄慧 2011 物理学报 60 046202Google Scholar

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202Google Scholar

    [8]

    Jiang L, Liu F, Chen H, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 036312Google Scholar

    [9]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar

    [10]

    蒲中奇, 张伟, 施克仁, 张俊华, 吴玉林 2005 清华大学学报: 自然科学版 45 1450Google Scholar

    Pu Z Q, Zhang W, Shi K R, Zhang J H, Wu Y L 2005 Journal Tsinghua University (Science and Technology) 45 1450Google Scholar

    [11]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [12]

    马艳, 林书玉, 徐洁, 唐一璠 2017 物理学报 66 014302Google Scholar

    Ma Y, Lin S Y, Xu J, Tang Y F 2017 Acta Phys. Sin. 66 014302Google Scholar

    [13]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [14]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [15]

    苗博雅, 安宇 2015 物理学报 64 204301Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 204301Google Scholar

    [16]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727Google Scholar

    [17]

    陈时, 张迪, 王成会, 张引红 2019 物理学报 68 074301Google Scholar

    Chen S, Zhang D, Wang C H, Zhang Y H 2019 Acta Phys. Sin. 68 074301Google Scholar

    [18]

    Zhang Y Y, Chen W Z, Zhang L L, Wang X, Chen Z 2019 Chin. Phys. Lett. 36 034301Google Scholar

    [19]

    Wu W H, Yang P F, Zhai W, Wei B B 2019 Chin. Phys. Lett. 36 084302Google Scholar

    [20]

    Zhu C S, Han D, Feng L, Xu S 2019 Chin. Phys. B 28 034701Google Scholar

    [21]

    王成会, 林书玉 2011 声学学报 36 325Google Scholar

    Wang C H, Lin S Y 2011 Acta Acustica 36 325Google Scholar

    [22]

    Jiao J J, He Y, Yasui K, Kentish S E, Ashokkumar M, Manasseh R, Lee J 2015 Ultrason. Sonochem. 22 70Google Scholar

    [23]

    Hilgenfeldt S, Grossmann S, LohseD 1999 Phys. Fluids 11 1318Google Scholar

  • 图 1  三泡和五泡模型

    Fig. 1.  Three-bubble model and five-bubble model

    图 2  小气泡最大膨胀半径随大气泡初始半径的变化

    Fig. 2.  The maximum expansion radius of small bubbles varies with the initial radius of large bubbles

    图 3  均匀气泡系统中中间气泡半径随时间的变化曲线

    Fig. 3.  Radius-time curves of middle bubbles in uniform bubble system

    图 4  气泡半径随时间的变化曲线

    Fig. 4.  Radius-time curves of bubbles

    图 5  三泡模型中小气泡膨胀阶段受到的压强 (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=15\;{\text{μm}}$; (c) $R_{20}=25\;{\text{μm}}$; (d) $R_{20}=35\;{\text{μm}}$; (e) $R_{20}=40\;{\text{μm}}$

    Fig. 5.  Total pressure acting on growth stage of small bubble in three-bubble model: (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=15\;{\text{μm}}$; (c) $R_{20}=25\;{\text{μm}}$; (d) $R_{20}=35\;{\text{μm}}$; (e) $R_{20}=40\;{\text{μm}}$.

    图 6  五泡模型中小气泡膨胀阶段受到的压强 (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=10\;{\text{μm}}$; (c) $R_{20}=16\;{\text{μm}}$; (d) $R_{20}=25\;{\text{μm}}$; (e) $R_{20}=30\;{\text{μm}}$

    Fig. 6.  Total pressure acting on growth stage of small bubble in five-bubble model: (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=10\;{\text{μm}}$; (c) $R_{20}=16\;{\text{μm}}$; (d) $R_{20}=25\;{\text{μm}}$; (e) $R_{20}=30\;{\text{μm}}$.

    图 7  两个模型中小气泡内的最高温度随大气泡初始半径的变化

    Fig. 7.  The maximum temperature of small bubbles in two models varies with the initial radius of large bubbles

    图 8  三泡模型中大小气泡之间的次Bjerknes力的变化 (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=15\;{\text{μm}}$; (c) $R_{20}=25\;{\text{μm}}$; (d) $R_{20}=35\;{\text{μm}}$; (e) $R_{20}=40\;{\text{μm}}$

    Fig. 8.  Changes of secondary Bjerknes forces between large and small bubbles in three-bubble model: (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=15\;{\text{μm}}$; (c) $R_{20}=25\;{\text{μm}}$; (d) $R_{20}=35\;{\text{μm}}$; (e) $R_{20}=40\;{\text{μm}}$.

    图 9  五泡模型中大小气泡之间的次Bjerknes力的变化 (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=10\;{\text{μm}}$; (c) $R_{20}=16\;{\text{μm}}$; (d) $R_{20}=25\;{\text{μm}}$; (e) $R_{20}=30\;{\text{μm}}$

    Fig. 9.  Changes of secondary Bjerknes forces between large and small bubbles in five-bubble model: (a) $R_{20}=5\;{\text{μm}}$; (b) $R_{20}=10\;{\text{μm}}$; (c) $R_{20}=16\;{\text{μm}}$; (d) $R_{20}=25\;{\text{μm}}$; (e) $R_{20}=30\;{\text{μm}}$.

  • [1]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [2]

    Doinikov A A, Zavtrak S T 1998 J. Acoust. Soc. Am. 99 3849

    [3]

    Moussatov A, Granger C, Dubus B 2003 Ultrason. Sonochem. 10 191Google Scholar

    [4]

    Mettin R, Luther S, Ohl C D, Lauterborn W 1999 Ultrason. Sonochem. 6 25Google Scholar

    [5]

    Cr um, Lawrence A 1975 J. Acoust. Soc. Am. 57 1363Google Scholar

    [6]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [7]

    卢义刚, 吴雄慧 2011 物理学报 60 046202Google Scholar

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202Google Scholar

    [8]

    Jiang L, Liu F, Chen H, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 036312Google Scholar

    [9]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar

    [10]

    蒲中奇, 张伟, 施克仁, 张俊华, 吴玉林 2005 清华大学学报: 自然科学版 45 1450Google Scholar

    Pu Z Q, Zhang W, Shi K R, Zhang J H, Wu Y L 2005 Journal Tsinghua University (Science and Technology) 45 1450Google Scholar

    [11]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [12]

    马艳, 林书玉, 徐洁, 唐一璠 2017 物理学报 66 014302Google Scholar

    Ma Y, Lin S Y, Xu J, Tang Y F 2017 Acta Phys. Sin. 66 014302Google Scholar

    [13]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [14]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [15]

    苗博雅, 安宇 2015 物理学报 64 204301Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 204301Google Scholar

    [16]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727Google Scholar

    [17]

    陈时, 张迪, 王成会, 张引红 2019 物理学报 68 074301Google Scholar

    Chen S, Zhang D, Wang C H, Zhang Y H 2019 Acta Phys. Sin. 68 074301Google Scholar

    [18]

    Zhang Y Y, Chen W Z, Zhang L L, Wang X, Chen Z 2019 Chin. Phys. Lett. 36 034301Google Scholar

    [19]

    Wu W H, Yang P F, Zhai W, Wei B B 2019 Chin. Phys. Lett. 36 084302Google Scholar

    [20]

    Zhu C S, Han D, Feng L, Xu S 2019 Chin. Phys. B 28 034701Google Scholar

    [21]

    王成会, 林书玉 2011 声学学报 36 325Google Scholar

    Wang C H, Lin S Y 2011 Acta Acustica 36 325Google Scholar

    [22]

    Jiao J J, He Y, Yasui K, Kentish S E, Ashokkumar M, Manasseh R, Lee J 2015 Ultrason. Sonochem. 22 70Google Scholar

    [23]

    Hilgenfeldt S, Grossmann S, LohseD 1999 Phys. Fluids 11 1318Google Scholar

  • [1] 左馨怡, 雷照康, 武耀蓉, 王成会. 黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 物理学报, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [2] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, 2023, 72(19): 194703. doi: 10.7498/aps.72.20230863
    [3] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析. 物理学报, 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [4] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [5] 清河美, 那仁满都拉. 不同类型气泡组成的混合泡群声空化特性. 物理学报, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [6] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [7] 马艳, 林书玉, 徐洁, 唐一璠. 非球形效应对强声场中次Bjerknes力的影响. 物理学报, 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [8] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [9] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [10] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究. 物理学报, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [11] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动. 物理学报, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [12] 王成会, 程建春. 弹性管中泡群内气泡的非线性声响应. 物理学报, 2014, 63(13): 134301. doi: 10.7498/aps.63.134301
    [13] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [14] 郭平波, 王少峰, 吴小志, 张福州, 叶金琴, 王 锐. 肥皂泡筏中的力律与肥皂泡半径的关系. 物理学报, 2008, 57(10): 6063-6067. doi: 10.7498/aps.57.6063
    [15] 周晓华, 张劭光, 杨继庆, 屈学民, 刘渊声, 王斯刚. 基于自发曲率模型对几种极限形状膜泡及典型相变和分裂过程的研究. 物理学报, 2007, 56(10): 6137-6142. doi: 10.7498/aps.56.6137
    [16] 韩宝善, 徐家法, 聂向富, 孙慧玲, 欧阳芳丽, 唐贵德. 脉冲偏磁场作用下硬磁泡形成与温度的关系. 物理学报, 1988, 37(9): 1527-1533. doi: 10.7498/aps.37.1527
    [17] 霍素国, 聂向富, 韩宝善. 温度对普通硬磁泡的影响. 物理学报, 1988, 37(10): 1703-1706. doi: 10.7498/aps.37.1703
    [18] 韩宝善, 凌吉武, 李伯臧, 聂向富, 唐贵德. 面内磁场对硬磁泡形成的影响. 物理学报, 1986, 35(1): 130-135. doi: 10.7498/aps.35.130
    [19] 韩宝善, 李伯臧, 聂向富, 唐贵德. 立方磁晶各向异性对面内磁场中条畴和磁泡稳定性的影响. 物理学报, 1985, 34(2): 155-163. doi: 10.7498/aps.34.155
    [20] 韩宝善, 聂向富, 唐贵德, 奚卫. 一次脉冲偏磁场作用下硬磁泡的形成. 物理学报, 1985, 34(11): 1396-1406. doi: 10.7498/aps.34.1396
计量
  • 文章访问数:  9003
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 修回日期:  2019-09-23
  • 上网日期:  2019-11-26
  • 刊出日期:  2019-12-05

/

返回文章
返回