-
拓扑光子学、拓扑物理与光学的结合, 为凝聚态理论的验证以及新型光学器件的构建提供了新的视角. 紧束缚模型是凝聚态物理的重要研究手段. 我们发现, 将传统光子晶体的背景材料由通常的空气改为有效介电常数为负数的材料之后, 这样的光子晶体和紧束缚模型有一一对应的关系, 可以用于相关理论的验证. 通过数值仿真实验, 在蜂巢晶格负背景光子晶体结构中验证了之字形(zigzag)、胡须型(bearded)等界面态的存在性. 我们提出了两种实验构想, 以期在微波频段开发相应的凝聚态理论验证平台, 为拓扑物理的研究提供全新的工具. 我们也希望, 这些新理论的验证能为今后光学仪器的设计提供崭新思路.Topology photonic, a combination of topology physics and optics provides novel visions to the demonstration of theoretical physics and designs principles to new optical devices. Being a key tool to condensed matter physics, tight-binding model helps the development of topology physics. We found that by changing the background material from vacuum to an effective medium with negative permittivity in traditional photonic crystals, a one-to-one correspondence to tight-binding model can be found for this new type of photonic crystal. We show by numerical simulations the existence of edge states located at both the zigzag and bearded boundaries of a honeycomb-lattice photonic crystal imbedded in negative permittivity material. Two experimental realizations are proposed that it is possible to build up a demonstration platform working at microwave frequencies to verify corresponding topology physics theories using simple photonic crystal structures. We hope that the successful verification of new topology physics can further trigger applications in optics.
-
Keywords:
- topologic photonics /
- Tight-Binding model /
- photonic crystal /
- edge/interface state








下载: