搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海起伏海面下气泡层对声传播的影响

姚美娟 鹿力成 孙炳文 郭圣明 马力

引用本文:
Citation:

浅海起伏海面下气泡层对声传播的影响

姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力

Effects of wind-generated bubbles layer on sound propagation underneath rough sea surface in shallow water

Yao Mei-Juan, Lu Li-Cheng, Sun Bing-Wen, Guo Sheng-Ming, Ma Li
PDF
HTML
导出引用
  • 分析了起伏海面下风浪引起的气泡层对海面反射损失和对声传播的影响. 一方面, 气泡层会改变原来水中的声速剖面; 另一方面, 气泡层会对声波产生散射和吸收作用. 考虑以上两方面的因素, 分析了不同风速下气泡层对海面反射损失和声传播损失的影响, 仿真发现, 在风速大于10 m/s时, 对于2 kHz以上频率时气泡层对小掠射角下海面反射损失的影响不可忽视. 在给定的水声环境中, 当声源深度和接收深度都为7 m时, 风速为16 m/s的风浪下生成的气泡层, 在10 km处对3 kHz的声传播损失的影响达到8.1 dB. 当声源深度和接收深度都为18 m时, 风速为16 m/s的风浪下生成的气泡层, 在10 km处对3 kHz的声传播损失的影响达到4 dB.
    The reflection coefficient of the flat sea surface in the ideal condition to the incident sound wave is –1. The perfect reflection effect does not introduce reflection loss. However, the sea surface is usually rough due to the wind. The wind-generated rough sea surface has not only reflection effect, but also scattering effect on the sound wave. At the same time, the wind-generated bubbles layer also has significant effect on the sound propagation. On the one hand, the bubbles layer can change the sound speed profile and result in the refraction of the incident sound wave. On the other hand, the bubbles layer has scattering effect and absorption effect on the incident sound wave and leads to the sound wave to attenuate. In fact, the rough sea surface and the bubbles layer are two main factors affecting the sound propagation in the windy weather at sea. Many researchers have paid much attention to the effect of the wind-generated rough sea surface on the sound propagation, but few of them have considered the effect of the wind-generated bubbles layer on the sound propagation. Based on the Ramsurf sound propagation model under the rough sea surface, the effects of wind-generated bubbles layer underneath rough sea surface on reflection loss and sound propagation with different wind speeds are analyzed. Based on the Hall-Novarini bubbles population model, the sound speed profile in the bubbles layer is modified and the attenuation coefficient due to scattering and absorption of the bubbles layer is calculated. The simulation results shows that when the wind speed is 10 m/s, the effect of the bubbles layer is significant on reflection loss with the frequencies higher than 2 kHz. In the given underwater acoustic environment, for a frequency of 3 kHz, when the source depth and the receiver depth are both 7 m, the enhancement of the transmission loss due to the bubbles layer is 2.6 dB for a wind speed of 13 m/s, and the enhancement is 8.1 dB for a wind speed of 16 m/s. And when the source depth and the receiver depth are both 18 m, the enhancement of the transmission loss due to the bubbles layer is 2.5 dB for a wind speed of 13 m/s and the enhancement is 4 dB for a wind speed of 16 m/s.
      通信作者: 鹿力成, luce_1983@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11904382)和中科院声学所青年英才计划(批准号: 201701)资助的课题
      Corresponding author: Lu Li-Cheng, luce_1983@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11904382) and the IACAS Young Elite Researcher Project QNYC (Grant No. 201701)
    [1]

    Martin S, Michael B P 2008 J. Acoust. Soc. Am. 124 137Google Scholar

    [2]

    Tindle C T, Deane G B 2005 J. Acoust. Soc. Am. 117 2783Google Scholar

    [3]

    Tindle C T, Deane G B, Preisig J C 2009 J. Acoust. Soc. Am. 125 66Google Scholar

    [4]

    Preisig J C, Deane G B 2004 J. Acoust. Soc. Am. 116 2067Google Scholar

    [5]

    Chapman D M F 1983 J. Acoust. Soc. Am. 73 520Google Scholar

    [6]

    Williams K L, Thorsos E I, Elam W T 2004 J. Acoust. Soc. Am. 116 1975Google Scholar

    [7]

    Zhou J X, Zhang X Z, Peng Z H, Martin J S 2007 J. Acoust. Soc. Am. 121 98Google Scholar

    [8]

    Keiffer R S, Novarini J C, Norton G V 1995 J. Acoust. Soc. Am. 97 227Google Scholar

    [9]

    Vossen R V, Ainslie M A 2011 J. Acoust. Soc. Am. 130 3413Google Scholar

    [10]

    Dahl P H, Choi J W, Williams N J, Graber H C 2008 J. Acoust. Soc. Am. 124 EL163Google Scholar

    [11]

    Yang T C 2006 J. Acoust. Soc. Am. 120 2595Google Scholar

    [12]

    Park C, Seong W, Gerstoft P, Hodgkiss W S 2011 J. Acoust. Soc. Am. 129 98Google Scholar

    [13]

    Karjadi E A, Badiey M, Kirby J T, Bayindir C 2012 IEEE J. Ocean. Eng. 37 112Google Scholar

    [14]

    Jones A D, Duncan A J, Maggi A 2016 IEEE J. Ocean. Eng. 41 689Google Scholar

    [15]

    Zou Z G, Badiey M 2018 IEEE J. Ocean. Eng. 43 1187Google Scholar

    [16]

    Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar

    [17]

    Ainslie M A 2005 J. Acoust. Soc. Am. 118 3513Google Scholar

    [18]

    Thorsos E I, Broschat S L 1995 J. Acoust. Soc. Am. 97 2082Google Scholar

    [19]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [20]

    Persion W J, Moskowitz L 1964 J. Geophys. Res. 69 5181Google Scholar

    [21]

    Thorsos E I 1990 J. Acoust. Soc. Am. 88 335Google Scholar

    [22]

    Hall M V 1989 J. Acoust. Soc. Am. 86 1103Google Scholar

    [23]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer Business Media) p50

    [24]

    郭立新, 王蕊, 吴振森 2009 随机粗糙面散射的基本理论与方法 (北京: 科学出版社) 第4页

    Guo L X, Wang R, Wu Z S 2009 Basic Theory and Method of Random Rough Surface Scattering (Beijing: Science Press) p4 (in Chinese)

  • 图 1  一维粗糙海面散射示意图

    Fig. 1.  Scattering geometry of one-dimensional rough sea surface.

    图 2  气泡层引起的水中声速剖面的改变

    Fig. 2.  variation of the sound speed profile due to bubbles layer.

    图 3  气泡层引起的声能量的衰减系数

    Fig. 3.  Extinction coefficient due to bubbles layer.

    图 4  气泡层的多层结构示意图

    Fig. 4.  Layered structure geometry of the bubbles layer.

    图 5  风速为7 m/s时起伏海面下气泡层对海面反射损失的影响 (a) 无气泡层; (b) 考虑气泡层对声波的消减效应; (c) 考虑气泡层对声波的折射效应; (d) 同时考虑气泡层对声波的折射效应和消减效应

    Fig. 5.  Effects of the bubbles layer underneath the rough sea surface on reflection loss in nepers with a wind speed of 7 m/s: (a) Rough sea surface; (b) rough sea surface + scattering and absorption effect of the bubbles layer; (c) rough sea surface + refraction effect of the bubbles layer; (d) rough sea surface + scattering and absorption effect of the bubbles layer + refraction effect of the bubbles layer.

    图 6  风速为10 m/s时起伏海面以及气泡层对海面反射损失的影响 (a) 无气泡层; (b) 考虑气泡层对声波的消减效应; (c) 考虑气泡层对声波的折射效应; (d) 同时考虑气泡层对声波的折射效应和消减效应

    Fig. 6.  Effects of the bubbles layer underneath the rough sea surface on reflection loss in nepers with a wind speed of 10 m/s: (a) Rough sea surface; (b) rough sea surface + scattering and absorption effect of the bubbles layer; (c) rough sea surface + refraction effect of the bubbles layer; (d) rough sea surface + scattering and absorption effect of the bubbles layer + refraction effect of the bubbles layer.

    图 7  风速为13 m/s时起伏海面以及气泡层对海面反射损失的影响 (a) 无气泡层; (b) 考虑气泡层对声波的消减效应; (c) 考虑气泡层对声波的折射效应; (d) 同时考虑气泡层对声波的折射效应和消减效应

    Fig. 7.  Effects of the bubbles layer underneath the rough sea surface on reflection loss in nepers with a wind speed of 13 m/s: (a) Rough sea surface; (b) rough sea surface + scattering and absorption effect of the bubbles layer; (c) rough sea surface + refraction effect of the bubbles layer; (d) rough sea surface + scattering and absorption effect of the bubbles layer + refraction effect of the bubbles layer.

    图 8  不同风速时平整海面、起伏海面不考虑气泡层因素和起伏海面考虑气泡层因素时的传播损失曲线比较(SD = 7 m, RD = 7 m) (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s

    Fig. 8.  Comparison of the transmission loss curves with different wind speeds (SD = 7 m, RD = 7 m): (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s.

    图 9  不同风速时平整海面、起伏海面不考虑气泡层因素和起伏海面考虑气泡层因素时的传播损失曲线比较(SD = 18 m, RD = 18 m) (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s

    Fig. 9.  Comparison of the transmission loss curves with different wind speeds (SD = 18 m, RD = 18 m.): (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s.

  • [1]

    Martin S, Michael B P 2008 J. Acoust. Soc. Am. 124 137Google Scholar

    [2]

    Tindle C T, Deane G B 2005 J. Acoust. Soc. Am. 117 2783Google Scholar

    [3]

    Tindle C T, Deane G B, Preisig J C 2009 J. Acoust. Soc. Am. 125 66Google Scholar

    [4]

    Preisig J C, Deane G B 2004 J. Acoust. Soc. Am. 116 2067Google Scholar

    [5]

    Chapman D M F 1983 J. Acoust. Soc. Am. 73 520Google Scholar

    [6]

    Williams K L, Thorsos E I, Elam W T 2004 J. Acoust. Soc. Am. 116 1975Google Scholar

    [7]

    Zhou J X, Zhang X Z, Peng Z H, Martin J S 2007 J. Acoust. Soc. Am. 121 98Google Scholar

    [8]

    Keiffer R S, Novarini J C, Norton G V 1995 J. Acoust. Soc. Am. 97 227Google Scholar

    [9]

    Vossen R V, Ainslie M A 2011 J. Acoust. Soc. Am. 130 3413Google Scholar

    [10]

    Dahl P H, Choi J W, Williams N J, Graber H C 2008 J. Acoust. Soc. Am. 124 EL163Google Scholar

    [11]

    Yang T C 2006 J. Acoust. Soc. Am. 120 2595Google Scholar

    [12]

    Park C, Seong W, Gerstoft P, Hodgkiss W S 2011 J. Acoust. Soc. Am. 129 98Google Scholar

    [13]

    Karjadi E A, Badiey M, Kirby J T, Bayindir C 2012 IEEE J. Ocean. Eng. 37 112Google Scholar

    [14]

    Jones A D, Duncan A J, Maggi A 2016 IEEE J. Ocean. Eng. 41 689Google Scholar

    [15]

    Zou Z G, Badiey M 2018 IEEE J. Ocean. Eng. 43 1187Google Scholar

    [16]

    Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar

    [17]

    Ainslie M A 2005 J. Acoust. Soc. Am. 118 3513Google Scholar

    [18]

    Thorsos E I, Broschat S L 1995 J. Acoust. Soc. Am. 97 2082Google Scholar

    [19]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [20]

    Persion W J, Moskowitz L 1964 J. Geophys. Res. 69 5181Google Scholar

    [21]

    Thorsos E I 1990 J. Acoust. Soc. Am. 88 335Google Scholar

    [22]

    Hall M V 1989 J. Acoust. Soc. Am. 86 1103Google Scholar

    [23]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer Business Media) p50

    [24]

    郭立新, 王蕊, 吴振森 2009 随机粗糙面散射的基本理论与方法 (北京: 科学出版社) 第4页

    Guo L X, Wang R, Wu Z S 2009 Basic Theory and Method of Random Rough Surface Scattering (Beijing: Science Press) p4 (in Chinese)

  • [1] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [2] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析. 物理学报, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [4] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211266
    [5] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [6] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [7] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [8] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [9] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [10] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响. 物理学报, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [11] 周建波, 朴胜春, 刘亚琴, 祝捍皓. 海面随机起伏对噪声场空间特性的影响规律. 物理学报, 2017, 66(1): 014301. doi: 10.7498/aps.66.014301
    [12] 郑广赢, 黄益旺. 气泡线性振动对含气泡水饱和多孔介质声传播的影响. 物理学报, 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [13] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [14] 苗博雅, 安宇. 两种气泡混合的声空化. 物理学报, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [15] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [16] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播. 物理学报, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [17] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究. 物理学报, 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [18] 何寿杰, 陈岐岱, 李雪辰, 艾希成, 张建平, 王 龙. 圆锥气泡声致发光光脉冲和光谱. 物理学报, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [19] 张民, 吴振森, 张延冬, 杨廷高. 脉冲波在强起伏湍流介质中的传播特征分析. 物理学报, 2001, 50(6): 1052-1057. doi: 10.7498/aps.50.1052
    [20] 钱祖文. 水中气泡之间的声相互作用. 物理学报, 1981, 30(4): 442-447. doi: 10.7498/aps.30.442
计量
  • 文章访问数:  10263
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-07
  • 修回日期:  2019-10-21
  • 刊出日期:  2020-01-20

/

返回文章
返回