搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续太赫兹波双物距叠层定量相衬成像

王大勇 李兵 戎路 赵洁 王云新 翟长超

引用本文:
Citation:

连续太赫兹波双物距叠层定量相衬成像

王大勇, 李兵, 戎路, 赵洁, 王云新, 翟长超

Continuous-wave terahertz quantitative dual-plane ptychography

Wang Da-Yong, Li Bing, Rong Lu, Zhao Jie, Wang Yun-Xin, Zhai Chang-Chao
PDF
HTML
导出引用
  • 针对连续太赫兹波叠层成像重建算法收敛较为迟滞的问题, 提出一种连续太赫兹波双物距叠层成像方法及相关重建算法, 使用不同记录距离形成的差异化衍射图幅值作为重建算法记录平面的约束条件, 增加了记录平面数据多样性和衍射信息冗余度. 仿真结果表明, 本方法可以加快算法收敛速率, 有效减少迭代次数, 提高连续太赫兹波定量相衬成像计算效率. 随后构建了基于2.52 THz光泵连续太赫兹激光器的双物距叠层成像实验装置, 应用双物距记录方法及改进算法重建获得了聚丙烯基字母图案样品的幅值和相位分布, 结果表明改进方法可以减少算法迭代次数, 提升计算效率, 同时改善相位像重建结果保真度.
    Terahertz (THz) radiation lies between the millimeter and infrared region of the electromagnetic spectrum, which is typically defined as the frequency range of 0.1–10 THz and the corresponding wavelength ranges from 30 μm to 3 mm. Terahertz radiation due to wide spectrum, high penetration, low energy, and other important features, has been a valuable tool for imaging and non-destructive testing on a submillimeter scale. Continuous-wave (CW) terahertz ptychography is a type of phase-contrast technique with advantages of simple set-up and large field-of-view. It retrieves the complex-valued transmission function of the specimen and the probe function at the same time. The extended ptychographic iterative engine (ePIE) algorithm is used as the reconstruction algorithm in the field of ptychography, because it is relatively simple, and can use computer memory efficiently. However, the problem of algorithm convergence delay makes us unable to acquire the reconstruction result very quickly. Since the ptychography is a problem of retrieving phase information, physical constraints affect the convergence speed of the algorithm strongly. In this paper, we propose a dual-plane ePIE (dp-ePIE) algorithm for CW THz ptychography. By moving detector along the axis and capturing diffraction patterns of one zone of an object at two recording planes, then, two sets of patterns used as the constraints simultaneously can increase the diversity of experimental parameter. Hence, the convergence rate can be improved. The simulation results suggest better reconstruction fidelity with a faster convergence rate by the dp-ePIE algorithm. The dual-plane terahertz ptychography experimental setup is built based on 2.52 THz optically pumped laser and Pyrocam-III pyroelectric array detector. Compared with other methods to increase the diversity of measurement, the setup of dual-plane ptychography can be compact and simple, thus reducing the terahertz wave transmission loss. A polypropylene sample is adopted and it is approximated as a pure phase object. No-reference structural sharpness (NRSS) is utilized as a quantitative evaluation index. It takes 45.086 s to achieve NRSS value of 0.9831 by using the dp-ePIE algorithm in 10 iterations, while the NRSS value and calculation time for e-PIE algorithm are 0.9531 and 57.117 s (20 loops), respectively. The experimental results show that the dp-ePIE algorithm can obtain high-quality amplitude and phase distribution with less iterations than the traditional ePIE algorithm.
      通信作者: 戎路, ronglu@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61675010)和北京市科技新星(批准号: XX2018072)资助的课题
      Corresponding author: Rong Lu, ronglu@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675010) and the Beijing Nova Program, China (Grant No. XX2018072)
    [1]

    Zaytsev K I, Kudrin K G, Karasik V E, Reshetov I V, Yurchenko, S O 2015 Appl. Phys. Lett. 106 053702Google Scholar

    [2]

    Ahi K 2019 Measurement 138 614Google Scholar

    [3]

    Kowalski M, Kastek M 2016 IEEE Trans. Inf. Forensics Secur. 11 2028Google Scholar

    [4]

    Yakovlev E V, Zaytsev K I, Dolganova I N, Yurchenko S O 2015 IEEE Trans Terahertz. Sci. Technol. 5 810Google Scholar

    [5]

    Kowalski M, Kastek M, Walczakowski M, Palka N, Szustakowski M 2015 Appl. Opt. 54 3826Google Scholar

    [6]

    Angrisani L, Bonavolontà F, Cavallo G, Liccardo A, Schiano L M R 2018 Measurement 116 83Google Scholar

    [7]

    Zaytsev K I, Karasik V E, Fokina I N, Alekhnovich V I 2013 Opt. Eng. 52 68203Google Scholar

    [8]

    Yousefi B, Sfarra S, Castanedo C I, Maldague X P V 2017 Infrared Phys. Techn. 85 163Google Scholar

    [9]

    Zhang H, Robitaille F, Grosse C U, Clemente I, Martins J O, Sfarra S, Maldague X P V 2018 Composites Part A 107 282Google Scholar

    [10]

    Löffler T, May T, Am Weg C, Alcin A, Hils Bernd, Roskos H 2007 Appl. Phys. Lett. 90 91111Google Scholar

    [11]

    Ding S H, Li Q, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar

    [12]

    Rong L, Latychevskaia T, Chen C H, Wang D Y, Yu Z P, Zhou X, Li Z Y, Huang H C, Wang Y X, Zhou Z 2015 Sci. Rep. 5 8445Google Scholar

    [13]

    Hou L, Han X W, Yang L, Shi W 2017 Chin. Phys. Lett. 34 054207Google Scholar

    [14]

    Valzania L, Feurer T, Zolliker P, Hack E 2018 Opt. Lett. 43 543Google Scholar

    [15]

    Rong L, Tang C, Wang D, Li B, Tan F, Wang Y, Shi X 2019 Opt. Express 27 938Google Scholar

    [16]

    Maiden A M, Rodenburg J M, 2009 Ultramicroscopy 109 1256Google Scholar

    [17]

    Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F, 2009 Ultramicroscopy 109 338Google Scholar

    [18]

    Maiden A, Johnson D, Li P 2017 Optica 4 736Google Scholar

    [19]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [20]

    肖俊, 李登宇, 王雅丽, 史祎诗 2016 物理学报 65 154203Google Scholar

    Xiao J, Li D Y, Wang Y L, Shi Y S 2016 Acta Phys. Sin. 65 154203Google Scholar

    [21]

    Fienup J R 1978 Opt. Lett. 3 27Google Scholar

    [22]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [23]

    Sanz M, Picazo-Bueno J A, García J, Micó V 2015 Opt. Express 23 21352Google Scholar

    [24]

    Zhang H, Bian Z, Jiang S, Liu J, Song P, Zheng G 2019 Opt. Lett. 44 1976Google Scholar

    [25]

    Li Y, Xiao W, Pan F, Rong L 2014 Chin. Opt. Lett. 12 020901Google Scholar

    [26]

    Pedrini G, Osten W, Zhang Y 2005 Opt. Lett. 30 833Google Scholar

    [27]

    谢小甫, 周进, 吴钦章 2010 计算机应用 30 921

    Xie X F, Zhou J, Wu Q Z 2010 Journal of Computer Application 30 921

  • 图 1  双物距叠层成像的原理图

    Fig. 1.  Schematic diagram of dual plane ptychographic imaging.

    图 2  仿真实验原理图

    Fig. 2.  Schematic diagram of the terahertz dual-plane ptychographic simulation.

    图 3  仿真实验中的样品 (a) 振幅分布, (b) 相位分布

    Fig. 3.  Sample for ptychographic simulation: (a) Input amplitude distribution; (b) input phase distribution.

    图 4  收敛度评价曲线

    Fig. 4.  Convergence of the ePIE and dp-ePIE algorithms.

    图 5  叠层仿真重建结果 (a1)、(b1), (c1)、(d1)和(e1)、(f1)分别表示ePIE算法迭代4次、20次及50次迭代重建振幅分布与相位分布; (a2)、(b2), (c2)、(d2)和(e2)、(f2)分别表示dp-ePIE算法迭代4次、20次及50次迭代重建振幅分布与相位分布

    Fig. 5.  Comparison of simulation results with ePIE and dp-ePIE: (a1) and (b1), (c1) and (d1), (e1) and (f1) are the amplitude and phase reconstruction with ePIE algorithm; (a2) and (b2), (c2) and (d2), (e2) and (f2) are the amplitude and phase reconstruction with dp-ePIE algorithm.

    图 6  重建结果的相关系数比较 (a) dp-ePIE与ePIE算法幅值重建结果与迭代次数关系; (b) dp-ePIE与ePIE算法相位重建结果与迭代次数关系

    Fig. 6.  Comparison of correlation coefficients of reconstruction results: (a) Comparison of correlation coefficients of amplitude reconstruction results with dp-ePIE and ePIE; (b) comparison of correlation coefficients of phase reconstruction results with dp-ePIE and ePIE.

    图 7  重建像相关系数与探测器采集位置间隔距离关系曲线

    Fig. 7.  Relation between correlation coefficients of reconstruction image and different recording intervals.

    图 8  连续太赫兹波叠层成像实验装置示意图

    Fig. 8.  Setup of continuous-wave terahertz dual-plane ptychography.

    图 9  聚丙烯可回收三角标志图案样品 (a)三角标志模型; (b)样品实物图

    Fig. 9.  Sample of recyclable polypropylene triangle pattern: (a) Model of the sample; (b) picture of the sample.

    图 10  两种叠层重建算法分别迭代10次后可回收标志的重建结果 (a1), (b1)分别表示ePIE算法重建振幅分布及相位分布; (a2), (b2)表示dp-ePIE算法重建振幅分布及相位分布

    Fig. 10.  The reconstructed results after 10 iterations by two different reconstruction algorithms: (a1), (b1) Represent the amplitude and phase reconstructed based on ePIE algorithm: (a2), (b2) represent the amplitude and phase reconstructed based dp-ePIE algorithm.

  • [1]

    Zaytsev K I, Kudrin K G, Karasik V E, Reshetov I V, Yurchenko, S O 2015 Appl. Phys. Lett. 106 053702Google Scholar

    [2]

    Ahi K 2019 Measurement 138 614Google Scholar

    [3]

    Kowalski M, Kastek M 2016 IEEE Trans. Inf. Forensics Secur. 11 2028Google Scholar

    [4]

    Yakovlev E V, Zaytsev K I, Dolganova I N, Yurchenko S O 2015 IEEE Trans Terahertz. Sci. Technol. 5 810Google Scholar

    [5]

    Kowalski M, Kastek M, Walczakowski M, Palka N, Szustakowski M 2015 Appl. Opt. 54 3826Google Scholar

    [6]

    Angrisani L, Bonavolontà F, Cavallo G, Liccardo A, Schiano L M R 2018 Measurement 116 83Google Scholar

    [7]

    Zaytsev K I, Karasik V E, Fokina I N, Alekhnovich V I 2013 Opt. Eng. 52 68203Google Scholar

    [8]

    Yousefi B, Sfarra S, Castanedo C I, Maldague X P V 2017 Infrared Phys. Techn. 85 163Google Scholar

    [9]

    Zhang H, Robitaille F, Grosse C U, Clemente I, Martins J O, Sfarra S, Maldague X P V 2018 Composites Part A 107 282Google Scholar

    [10]

    Löffler T, May T, Am Weg C, Alcin A, Hils Bernd, Roskos H 2007 Appl. Phys. Lett. 90 91111Google Scholar

    [11]

    Ding S H, Li Q, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar

    [12]

    Rong L, Latychevskaia T, Chen C H, Wang D Y, Yu Z P, Zhou X, Li Z Y, Huang H C, Wang Y X, Zhou Z 2015 Sci. Rep. 5 8445Google Scholar

    [13]

    Hou L, Han X W, Yang L, Shi W 2017 Chin. Phys. Lett. 34 054207Google Scholar

    [14]

    Valzania L, Feurer T, Zolliker P, Hack E 2018 Opt. Lett. 43 543Google Scholar

    [15]

    Rong L, Tang C, Wang D, Li B, Tan F, Wang Y, Shi X 2019 Opt. Express 27 938Google Scholar

    [16]

    Maiden A M, Rodenburg J M, 2009 Ultramicroscopy 109 1256Google Scholar

    [17]

    Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F, 2009 Ultramicroscopy 109 338Google Scholar

    [18]

    Maiden A, Johnson D, Li P 2017 Optica 4 736Google Scholar

    [19]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [20]

    肖俊, 李登宇, 王雅丽, 史祎诗 2016 物理学报 65 154203Google Scholar

    Xiao J, Li D Y, Wang Y L, Shi Y S 2016 Acta Phys. Sin. 65 154203Google Scholar

    [21]

    Fienup J R 1978 Opt. Lett. 3 27Google Scholar

    [22]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [23]

    Sanz M, Picazo-Bueno J A, García J, Micó V 2015 Opt. Express 23 21352Google Scholar

    [24]

    Zhang H, Bian Z, Jiang S, Liu J, Song P, Zheng G 2019 Opt. Lett. 44 1976Google Scholar

    [25]

    Li Y, Xiao W, Pan F, Rong L 2014 Chin. Opt. Lett. 12 020901Google Scholar

    [26]

    Pedrini G, Osten W, Zhang Y 2005 Opt. Lett. 30 833Google Scholar

    [27]

    谢小甫, 周进, 吴钦章 2010 计算机应用 30 921

    Xie X F, Zhou J, Wu Q Z 2010 Journal of Computer Application 30 921

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 更正: 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2024, 73(23): 239901. doi: 10.7498/aps.73.239901
    [3] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [4] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [5] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [6] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [7] 武丽敏, 徐德刚, 王与烨, 葛梅兰, 李海滨, 王泽龙, 姚建铨. 共光路连续太赫兹反射和衰减全反射成像. 物理学报, 2021, 70(11): 118701. doi: 10.7498/aps.70.20210182
    [8] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [9] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [10] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [11] 张雷雷, 唐立金, 张慕阳, 梁艳梅. 对称照明在傅里叶叠层成像中的应用. 物理学报, 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [12] 王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇. 基于叠层衍射成像的二元光学元件检测研究. 物理学报, 2017, 66(9): 094201. doi: 10.7498/aps.66.094201
    [13] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [14] 潘安, 张晓菲, 王彬, 赵青, 史祎诗. 厚样品三维叠层衍射成像的实验研究. 物理学报, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [15] 肖俊, 李登宇, 王雅丽, 史祎诗. 并行化叠层成像算法研究. 物理学报, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [16] 王东, 马迎军, 刘泉, 史祎诗. 可见光域多波长叠层衍射成像的实验研究. 物理学报, 2015, 64(8): 084203. doi: 10.7498/aps.64.084203
    [17] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [18] 王治昊, 王雅丽, 李拓, 史祎诗. 基于旋转相位编码与照明光束匹配的叠层衍射成像算法研究. 物理学报, 2014, 63(16): 164204. doi: 10.7498/aps.63.164204
    [19] 王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国. 可见光域叠层成像中照明光束的关键参量研究. 物理学报, 2013, 62(6): 064206. doi: 10.7498/aps.62.064206
    [20] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
计量
  • 文章访问数:  7768
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-10-12
  • 刊出日期:  2020-01-20

/

返回文章
返回